
Trie Structures

Jeffrey A. Barnett
jbb@notatt.com

Keywords: Data structures, information retrieval, tries, storage complexity.

1 Summary

Trie structures [3] have been part of the computer science toolkit for a long
time. The name comes from the word retrieval but is often pronounced
“try” instead of “tree.” A trie provides an efficient method to store sets
of strings. Common initial sequences are shared. For example, the strings
“CAB,” “CAR,” “CART,” “CAN,” and “CANE,” are stored as shown in
Figure 1 where asterisks indicate string-terminating characters. In this ex-

T* E*

B* R* N*

A

C

Figure 1: An example trie.

ample, seventeen string characters are stored in seven nodes. The savings
in storage space can be quite substantial in some cases, e.g., storing a large
dictionary, even though a node structure is substantially larger than a single
character.

1

Retrieval time—the time to see if a string is in a trie or add the string
if it isn’t—is bounded by the number of characters in the key string times
the number of characters in the alphabet. Therefore, tries provide an access
method that is linear in the length of the string. A novel theorem-proving
application is reported in [2] where trie structures are used to store prime
implicants in order to save storage, speed up access, and do subsumption
operations.

This note makes two modest contributions. The first is the idea of sharing
common final sequences. This provides another source of potential space
savings. The second is a rough analysis of the amount of storage necessary
for tries. The analysis investigates the case where all permutations of n
characters are stored in a trie. If a trie is not used, n · n! characters are
necessary because there are n! permutations of length n each.

It is shown that the trie size is ⌊e ·n!−1⌋ nodes, where e = 2.718 . . . is the
base of the natural logarithms, when initial sequence sharing is implemented.
Only n·2n−1 nodes are necessary when both initial and final sequence sharing
is used. Since storing all permutations exposes the densest set of sharing
possibilities, these results provide upper bounds on the storage reductions
offered by tries.

2 Node Implementation

A trie node can have zero, one, or more descendants as depicted in Figure 1.
Therefore, an implementation must provide for a variable branching factor.
Perhaps the simplest node structure, shown in Figure 2, is to represent each

character concatenation link sibling link

Figure 2: A trie node template.

node as a triple that contains the character, a link to following characters,
and a link to its siblings.

The example in Figure 1 is implemented by the trie in Figure 3 where
“/” indicates a null link, i.e., it is a terminator, and asterisks mark terminal
characters. The interpretation is that all siblings are direct descendants
of the same initial string. Siblings appear in sorted order for two reasons:
(1) it speeds up the search to retrieve a string because the search can stop
with a negative result as soon as a “larger” character is found and (2) a

2

C /

A /

B∗ / N∗ R∗ /

E∗ / / T∗ / /

?

?
- -

? ?

Figure 3: The example trie implementation.

canonical order increases the probability of final sequence sharing as will
become evident below.

3 Trie Storage Complexity

The storage complexity of a trie that represents all permutations of n charac-
ters is calculated here. The term, n-trie, is used to denote a trie that encodes
all permutations of n characters. Only initial sequences are shared. The re-
sult is developed in three steps: (1) the recurrence relation sn = n(1 + sn−1)
is established, where sn is the number of nodes in an n-trie, (2) it is shown
that sn =

∑n−1
c=0

n!
c!
, and (3) the formula, sn = ⌊e · n!− 1⌋, is verified.

Figure 4 shows n-tries for n = 1, 2, and 3 with respective sizes s1 = 1,
s2 = 4, and sn = 15 nodes. Assume that we desire to construct an n-trie
on the characters C = {c1, . . . , cn}. It is clear that each ci will be an initial
character. The final strings concatenated to each initial ci are all of the
permutations of the characters C\ci. That trie is simply a (n− 1)-trie with
size sn−1. Therefore,

sn = n+ nsn−1

= n(1 + sn−1).

The general solution to this recurrence relation is

sn =
n−1∑
c=0

n!

c!
+ b · n!,

3

A / /1-trie 2-trie
A B /

B / / A / /

-

? ?

3-trieA B C /

B C /

C / / B / /

A C /

C / / A / /

A B /

B / / A / /

- -

? ? ?
- - -

? ? ? ? ? ?

Figure 4: Examples of 1-, 2-, and 3-tries.

where b is an arbitrary constant. This result is easily checked by substitution.
Since s1 = 1, it follows that b = 0 and the desired particular solution is

sn =
n−1∑
c=0

n!

c!
.

To prove sn = ⌊e · n!− 1⌋, it suffices to show that 0 ≤ e · n!− 1− sn < 1.
Note that e = 1

0!
+ 1

1!
+ 1

2!
+ · · · and proceed as follows:

e · n!− 1− sn =
∞∑
c=0

n!

c!
− 1−

n−1∑
c=0

n!

c!

=
∞∑

c=n+1

n!

c!

so the value is surely positive. It remains to show that it is less than 1.

∞∑
c=n+1

n!

c!
=

1

n+ 1
+

1

(n+ 1)(n+ 2)
+ · · ·

<
1

n+ 1
+

1

(n+ 1)2
+ · · · (1)

=
1

1− 1
n+1

− 1 (2)

=
1

n
< 1.

4

Line (2) follows because (1) is the sum of a geometric progression. This
establishes that sn = ⌊e · n!− 1⌋.

It is interesting to note that an almost identical proof can be used to show
that e is irrational [1]. Assume that e = m/n for integers m and n. Then
e ·n! = ∑

c≥0
n!
c!
is an integer. Further,

∑c=n
c=0

n!
c!
must be an integer. Therefore,

the difference of the sums must be an integer too but, as we have just seen,
that difference lies between 0 and 1. Contradiction. So e is irrational.

4 A More Compact Representation

In this section, tries that share final sequences as well as initial sequences are
analyzed and it is shown that zn = n ·2n−1 nodes will be used to represent an
n-trie. Figure 5 depicts a 4-trie, for permutations of ABCD, with a complete

A
?
B
?
C

34-
?

D
?

D
4
C

3

C
?
B

24-
?

D
?

4 B
2

D
?
B

23-
?

C
?

3 2

B
?
A-
?

34

C
?
A

14-
?

D
?

4 A
1

D
?
A

13-
?

C
?

3 1

C
?
A-
?

24

B-
?

14

D
?
A

12-
?

B
?

2 1

D
?
A-
?

B-
?

C
?

23 13 12

- - -

- - -

Figure 5: A example of a 4-trie with initial and final sequence sharing.

sharing implementation. Vertical lines are concatenation links and horizontal
lines are sibling links. Missing lines are null links.

If a link terminates at a number, it is a link to the node with that number
as a superscript. Thus, only those nodes labelled by characters exist in the
implementation: z4 = 32 = 4 · 24−1. The right-most node, a C, has a
concatenation link to the A with the superscript 12 and that node represents
the final sequences AB and BA. Both are concatenated, by reference, to the
initial string DC as well as CD. Note that both the A and B nodes share
their final B and A nodes, respectively the nodes with superscripts 2 and 1,
with other permutations.

A structural observation is in order before the complexity result can be
derived. The crucial insight is that if a node is referenced multiple times,
it is always referenced by concatenation (down) links. Consider the permu-
tations, h1, . . . , hc, t1, . . . , tn−c and hi1 , . . . , hic , t1, . . . , tn−c, where i1, . . . , ic is
a permutation of 1, . . . , c, that have the final t sequence in common. It is
clear that both h sequences have all (n− c)! final sequences formed from the

5

permutations of t1, . . . , tn−c in common too. Since sibling links are ordered
(alphabetically in the examples), each of the subtries made of those charac-
ters will be identically arranged. Therefore, a single pointer can concatenate
all of the final permutations with a single reference. That in fact will be the
only source of node sharing in the implementations of n-tries.

Another way to state the observation is that there is one final c-trie for
every subset, S, of the n characters, where |S| = c and 1 ≤ c ≤ n. That
subtrie represents all permutations of the c characters in S. The unique
contribution of such a subtrie to zn is just the c top-level sibling nodes, one
for each character. Therefore,

zn =
n∑

c=1

c ·
(
n

c

)

and this form has the well-known evaluation zn = n · 2n−1.

References

[1] M. Aigner and G. M. Ziegler, Proofs from the Book, Springer, Chapter
6, 1991.

[2] J. de Kleer, An improved incremental algorithm for generating prime
implicants, Proceedings of the Tenth National Conference on Artificial
Intelligence, pp. 780–785 1992.

[3] E. Fredkin, Trie memory, Communications of the Association for Com-
puter Machinery 3, pp. 490–500, 1960.

6

