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1 Introduction

The term mean is certainly a popular descriptor that has been applied to
a variety of real-valued functions that operate on real arguments. Various
functions called means and related forms are extensively discussed in two
classics of analysis, both named Inequalities : One by Hardy, Littlewood, and
Polya [9] and the other by Beckenbach and Bellman [3]. Further, means
are a recurring topic in probability and statistics texts, such as Feller [7],
as well as the non-specialized mathematics literature, such as the American
Mathematics Monthly, where dozens of related articles have appeared over
the last few decades.

Since the term is in widespread use, any difficulty in finding a definition of
means would be somewhat surprising. However, the Encyclopedic Dictionary
of Mathematics prepared by the Mathematical Society of Japan [10] with 23
entries in its index does not offer one. The only definition that I could find
was in Borwein and Borwein [4], where functions, h:<+×<+→ <+, are called
means if min(x, y) ≤ h(x, y) ≤ max(x, y) for all x, y ∈ <+.

The intent of this article is to develop a reasonable definition of the term,
mean, then discuss some general properties shared by those functions that
satisfy this definition. My etymological approach has been to look for com-
monality in its various manifestations, particularly where a mean is used to
estimate characteristic values of numerical measures attached to elements of
a population. In fact, the definition offered herein might serve as a defi-
nition for a class of estimator functions except that that term has several
connotations that are not intended.

The particular properties discussed below are conditions where evaluation
of a mean can be decentralized (distributed) and a delineation of those means
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that can be represented as linear combinations of their arguments. It is also
noted that the collection of means is not convex.

2 Definition

A mean is a real-valued function whose arguments are drawn from some
connected subset of <, such as <+. Thus, a mean is a function whose domain
is L? = L1⋃L2 · · ·, for some interval L ⊂ <, where L1 = L and Ln+1 = L×Ln
when n ≥ 1. Thus, if h is a mean, we are entitled to write h:L? → <. Two
common themes spotted in virtually all usage of the term are that means
are symmetric and monotonic. A function, h, is symmetric in the sense used
here, if

h(x1, . . . , xn) = h(xi1 , . . . , xin)

for all permutations, i1, . . . , in, of the integers, 1, . . . , n, and it is monotonic,
actually monotonic non-decreasing, if

h(x1, . . . , xn) ≤ h(y1, . . . , yn),

whenever xi ≤ yi for 1 ≤ i ≤ n. It also common that a mean have the
identity property, that is to say h(x, . . . , x) = x for all x ∈ L.

So far, a mean could be any sequence, h1, h2, . . ., of functions such that
hn:Ln → <, for each n ≥ 1, is symmetric, monotonic and has the identity
property. As such, means lack a sense of coherence in their definition. The
question is where and how to impose constraints among the hn that are
consistent with the sort of examples we see when the rubric, mean, is used.
The simplest such constraint is that it be centralized, i.e., that

h(x1, . . . , xm) ≤ h(x1, . . . , xm, y1, . . . , yn) ≤ h(y1, . . . , yn)

when h(x1, . . . , xm) ≤ h(y1, . . . , yn). Here, I am on terminological thin ice
since I am unaware of centrality or any other name being previously dedi-
cated to this property. Centrality has the virtue of applicability to many, if
not most, functions that have been called means as well as being implicit in
the sorts of usage that statisticians seem to have in mind when talking of
means, medians, and the like; Statistical usage is to estimate various mea-
sures of populations and it would be decidedly strange if centralization were
not required.

I am prepared to put a definition on the table to see if it agrees with your
intuition as it does with mine.



Meaningful Functions 3

Definition 2.1 The function, h:L? → <, where L ⊂ < is a connected, non-
degenerate interval and L? = L1⋃L2 · · ·, is a mean if it has the identity
property and is monotonic, symmetric, and centralized. Below, hn, for n ≥ 1
is used to denote h restricted to Ln.

3 Examples and Otherwise

The Hölder means with L = <+, are defined for each c ∈ < ∪ {+∞,−∞} as

Hc(a1, . . . , an) = lim
v→c

[
1

n

n∑
i=1

avi

] 1
v

and are obvious examples of means. Thus, min and max are means as are the
arithmetic, geometric, and harmonic means; the respective values of c being
−∞, +∞, 1, 0, and −1. The median, defined as the middle-magnitude ele-
ment of an odd number of elements and the average of two middle-magnitude
elements when there are an even number, is a mean. On the other hand, the
mode is not because it isn’t monotonic.

Another family of means, with L = <, is constructed, by choosing an
arbitrary r ∈ <, as follows:

hr(a1, . . . , an) =


min(a1, . . . , an) if max(ai) < r;
r if min(ai) ≤ r ≤ max(ai);
max(a1, . . . , an) if r < min(ai);

This example shows that a mean need be neither continuous or homogeneous.
The Gini means [8] are a family with two parameters, u, v ∈ <, defined as

G(a1, . . . , an;u, v) =

(
n∑
i=1

au+vi

/ n∑
i=1

avi

) 1
u

.

These functions are not monotonic for all values of u and v (Farnsworth and
Orr [6]) so some are means, as defined herein, and some are not.

4 Basic Results

Several useful inferences about means are directly available from the above
definition:
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Theorem 4.1 min(x1, . . . , xn) ≤ h(x1, . . . , xn) ≤ max(x1, . . . , xn).

Theorem 4.2 Each hn is onto L, therefore, h:L? → L.

Theorem 4.3 h(x1, . . . , xm, y1, . . . , yn) = h(x1, . . . , xm) if h(x1, . . . , xm) =
h(y1, . . . , yn).

Theorem 4.4 If h is a continuous mean, then h−1n (x) ⊂ Ln is a connected
set for each x ∈ L and each n ≥ 1.

Theorem 4.5 If f :L → L is a strictly monotonic continuous function and
h is a mean, then hf (x1, . . . , xn) = f−1(h(f(x1), . . . , f(xn))) is a mean.

Theorem 4.1 follows from monotonicity and identity and Theorem 4.2 is a
direct consequence. Theorem 4.3 follows from centrality and Theorem 4.4
follows from continuity, monotonicity, and the fact that the domain of each
hn is convex. Theorem 4.5 is proved by showing that each defining property
of a mean is preserved.

5 The Effects of Multiplicity

It is sometimes convenient to write the arguments to means as multisets.
Thus, h(A) = h(a1, . . . , an), where the ai are the n = |A|, not necessarily
distinct, elements of the multiset A. In other words, the domain of h is finite
non-empty multisets formed from elements of L. This usage is sanctioned by
the fact that h is symmetric.

Next, the effect of multiplicity is examined. That venture is pursued by
the following definition and theorem.

Definition 5.1 If h(A
⋃ 〈x〉) = h(A

⋃ 〈x, x〉) for all A ∈ L? and x ∈ L,
then the mean, h, is called an extreme mean. Angle brackets are used to
emphasize that these are multisets.

Thus, an extreme mean is one that treats its argument as an ordinary set—
one without multiplicity—since duplicates can be added/removed without
changing the mean’s value. The rational for calling these means extreme is

Theorem 5.2 h is extreme if and only if h(A) = h(min(A),max(A)).
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“If” is straightforward as is “only if” when |A| = 1 or 2. So assume that
n > 2 and choose an A ∈ Ln, where A = 〈a1 ≤ · · · ≤ an〉 and the ai are the
n = |A| elements of A in a non-decreasing order. Then

hn−1(a1, a3, . . . , an) = hn(a1, a3, a3, . . . , an)

≥ hn(a1, a2, a3, . . . , an) = h(A)

≥ hn(a1, a1, a3, . . . , an)

= hn−1(a1, a3, . . . , an)

The first and last lines follow because duplicates can be added/removed with-
out changing the value of h. The other lines follow because h is monotonic.
Therefore,

h(A\a2) = hn−1(a1, a3, . . . , an)

= hn(a1, a2, a3, . . . , an)

= h(A)

where A\x is A with x removed. This procedure can be iterated n− 2 times
to remove all but (one copy of) the minimum and maximum elements of A.

The next theorem provides another characterization of extreme means.

Theorem 5.3 If f :L2 → L, is any monotonic non-decreasing function such
that f(x, x) = x, then h(A) = f(min(A),max(A)) is an extreme mean.

Symmetry is immediate and monotonicity and identity are part of the defi-
nition, so it is only remains to show that h is centralized, i.e., that h(A) ≤
h(A

⋃
B) ≤ h(B) when h(A) ≤ h(B). Since min(A

⋃
B) is either min(A) or

min(B) and max(A
⋃
B) is either max(A) or max(B), there are four cases

to consider. Centrality follows in each case because f is monotonic and
Theorem 4.1 entails min(A) ≤ max(B).

6 Dominance

It is possible that one mean dominate another in the sense that h(A) ≤ g(A)
for all A ∈ L?, e.g., the arithmetic mean is never less than the geometric
mean. This suggests a related question: Can there be two means that always
agree on the relative magnitudes assigned to multisets? In other words,
are their distinct means, h and g, such that h(A) < h(B) if and only if
g(A) < g(B)? The answer is no by an application of the calibration lemma:
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Lemma 6.1 Let f1 and f2 be surjections with common domain, D, and
range, R ⊂ <, such that f1(x) < f1(y) if and only if f2(x) < f2(y). If for
every r ∈ R, there is a c = c(r) such that r = f1(c) = f2(c), then f1 ≡ f2.

The function c(r) = 〈r〉 plays the role of the calibration function for means;
the identity property entails that h(r) = g(r) = r. Therefore, distinct means
must disagree on the relative magnitudes of some multisets. Further, for
every m ≥ 1, there are multisets, A,B ∈ Lm, such that g and h disagree on
the relative magnitudes of A and B. Here, c(r) = 〈m×r〉, where 〈m×r〉 is
the multiset that contains m repetitions of the element, r, and nothing else.

7 Distributed Computation

In practice, means are used to calculate characteristic measures of popula-
tions. Sometimes those populations are quite large so gathering the sample
at a central location can be difficult. Thus, we are motivated to seek meth-
ods to distribute the calculation rather than amass the data at a single site.
Consider a simple example: Two agents collect the samples A and B in order
to determine avg(A

⋃
B), where avg is the ordinary arithmetic mean. The

first agent calculates avg(A) and the second calculates avg(B) then both pass
their results to a central site where

avg(A
⋃
B) =

|A| · avg(A) + |B| · avg(B)

|A|+ |B|
is calculated. This example motivates the following definition:

Definition 7.1 The mean h is 1-distributable if there exist continuous func-
tions, dn:Ln → < and dmn:<×< → L for all m,n ≥ 1, such that h(A

⋃
B) =

dmn(dm(A), dn(B)) for all A,B ∈ L?, where m = |A| and n = |B|.

As a consequence of its definition, a 1-distributable mean must be continuous.
Continuity avoids trivialities such as dm and dn each interleaving the digits of
the decimal representations of their arguments and dmn reconstructing them.

If for a fixed k and all m,n > 1 there are continuous dn:Ln → <k and
dmn:<k × <k → L, then h is called k-distributable. Thus, all continuous
extreme means are 2-distributable. Figure 1 shows the general layout of the
distributed computation of a mean.

Another definition is necessary for the characterization of 1-distributable
means:
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�
�
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�
�

�
�Population B Observer- -dn(B)

dmn -h(A
⋃
B)

Figure 1: Distribute computation of mean.

Definition 7.2 A,B ∈ L? are h-equivalent, written A h≡ B, if |A| = |B| and
h(A

⋃
C) = h(B

⋃
C) for all C ∈ L?.

Clearly h≡ partitions Ln, for each n ≥ 1, into equivalence classes and a neces-
sary, but not sufficient, condition that A and B be in the same class is that
h(A) = h(B). The next theorem shows that the condition is sufficient as well
when h is 1-distributable.

Theorem 7.3 The mean h is 1-distributable if and only if (1) h is continuous
and (2) A h≡ B whenever |A| = |B| and h(A) = h(B).

If A h≡ B when h(A) = h(B) and |A| = |B|, it is straightforward to select a
unique element in each equivalence class induced by h≡. A natural choice is
〈m× q〉, where m = |A|, q = h(A), and 〈m× q〉 is the multiset that consists
of exactly m repetitions of q and nothing else. Now define dm(A) = h(A),
where m = |A|, and define dmn(x, y) = h(〈m×x〉⋃ 〈n×y〉) for each m,n ≥ 1.
The dm and dmn are continuous because h is, so the “if” part of the theorem
follows.

The “only if” part of the theorem will be proved if it can be shown that
h being 1-distributable implies dm(A) = dm(B) when h(A) = h(B) and
m = |A| = |B|, because, for arbitrary C ∈ L?,

h(A
⋃
C) = dmn(dm(A), dn(C))

= dmn(dm(B), dn(C))

= h(B
⋃
C),
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where n = |C|, and hence, A h≡ B. From these remarks, it is clear that the
demonstration can be completed by showing, for all m ≥ 1 and A ∈ Lm, that
dm(A) = dm(〈m × q〉), where q = h(A), since the mean of every member of
the equivalence class containing 〈m× q〉 will have the same dm value.

Let Z = {〈m × x〉|x ∈ L} and note that dm restricted to Z must be a
1-to-1 strictly monotonic function since it is continuous. Assume that dm
is increasing on Z (otherwise, negate its values). To show that dm(A) =
dm(〈m × q〉) for any A ∈ Lm, where q = h(A), let r = min(A) and R =
max(A). If r = R or dm(〈m× r〉) ≤ dm(A) ≤ dm(〈m×R〉), we are done. So
assume that dm(〈m×R〉) < dm(A). (The proof where dm(A) < dm(〈m× r〉)
is virtually identical.)

For each 1 ≤ i ≤ m and 0 ≤ s ≤ 1, let pi(s) = (1− s)r + sai and define
P (s) = 〈p1(s), . . . , pm(s)〉. Hence, P (0) = 〈m× r〉, P (1) = A, and dm(P (s))
is continuous. By the intermediate value theorem, there must be a 0 < z < 1
such that dm(P (z)) = dm(〈m × R〉). Thus, h(P (z)) = R but pi(z) < R for
all 1 ≤ i ≤ m, a contradiction (Theorem 4.1) since h(P (z)) ≤ max(pi(z)).
This completes the proof of Theorem 7.3.

The distribution theorem makes it immediate that the Hölder means,
defined on <+, are 1-distributable while the ordinary median is not. In fact,
the ordinary median is not k-distributable for any fixed k since its “storage
complexity” is of the order n/2.

From theorems 7.3 and 4.4 we know that the equivalence classes induced
by h≡, where h is 1-distributable, on Ln, for each n ≥ 1, are connected sets.
Further, there is a simple curve, namely fn(q) = 〈n× q〉, where q ∈ L, that
intersects each equivalence class in exactly one point and all elements of an
equivalence class can be continuously mapped onto that intersection. These
observations motivate two conjectures about k-distributable means:

Conjecture 7.4 If h is a k-distributable mean, then for each n ≥ 1, there is
a continuous fn:Lk → Ln such that fn(Lk) intersects each equivalence class
induced by h≡ on Ln in exactly one point.

Conjecture 7.5 If h is a k-distributable mean, then there are continuous
functions, dm:Lm → <k and dmn:<k × <k → L for all m,n ≥ 1, where
dmn(dm(A), dn(B)) = h(A ∪ B), such that dm(C) = dm(D) if and only if
C h≡ D.



Meaningful Functions 9

8 Convexity

It is straightforward to check that EL, the class of extreme means defined
on L?, is convex because h ∈ EL if and only if there exists a monotonic
function, f , with the identity property such that h(A) = f(min(A),max(A)).
Convexity follows since fz(x, y) = zf1(x, y)+(1−z)f2(x, y), where 0 ≤ z ≤ 1,
is monotonic and has the identity property whenever f1 and f2 do.

However, the class of all means, HL, with domain L? is not convex as
shown by an example: Since min and avg, the arithmetic average, are means
h(A) = .5 · min(A) + .5 · avg(A) would necessarily be a mean if HL were
convex. But h(3) = 3, h(1, 9) = 3, and h(3, 1, 9) = 8/3 6= 3 is a contradiction,
Theorem 4.3, so HL is not convex.

Another possibility is to liberalize the definition of convexity.

Definition 8.1 The class of functions, F , is Q-convex if the function fq ∈ F
for all q ∈ Q and f1, f2 ∈ F , where fq = q(f1, f2).

Ordinary convex is the case where Q is the collection of qz, where 0 ≤ z ≤ 1
and qz(f1, f2)(A) = zf1(A) + (1− z)f2(A). Of course every set of functions is
Q-convex when Q = {I1, I2}, where I1(x, y) = x and I2(x, y) = y are identity
functions. Barnett [2] shows that

Theorem 8.2 If HL is Q-convex, then Q ⊂ {I1, I2}.

Thus, it is not possible to define means as non-trivial combinations of a set
of “boundary” functions. On the other hand, a simple characterization of
all means formed from weighted sums of their arguments is available. These
functions are the subject of Sections 9 and 10.

9 Generalized Medians

The ordinary median estimates the break-even point for a fair even-money
over/under game: Player PU bets one unit that a single observation of a
random variable will be less than the median while player PO bets one unit
that the observation will be greater; the winner takes both bets. Wagers are
returned when the observation is equal to the median.

Elements of a class of generalized medians estimate the break even points
for fair over/under games for other betting odds, i.e., games where the two
players bet different amounts. These medians are introduced below and
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shown to be means. The next section introduces a class of weighted-sum
means and relates them to the class of generalized medians.

The generalized medians are defined in terms of the almost linear func-
tions that approximate straight lines, through (1, 1) with slopes in [0, 1], as
they might be rendered on a raster device such as a computer terminal.

Definition 9.1 The function ξ: I+ → I+ is almost linear if ξ(1) = 1 and
ξ(m)+ξ(n)−1 ≤ ξ(m+n) ≤ ξ(m)+ξ(n) for all m,n ≥ 1. J is the collection
of almost linear functions.

It is straightforward to show that 0 ≤ ξ(n + 1) − ξ(n) ≤ 1, hence, that
1 ≤ ξ(n) ≤ n for all ξ ∈ J and n ≥ 1. Figure 2 shows the initial sequences

1
@@��

1 2
XXXXXX

������
1 2 2 3

HH
H

��
�
1 2 2 3 3 4

HH
H

��
�

HH
H

��
�
1 2 2 2 3 54443

HH
H

��
�
1 2 2 2 3 3 655544

Figure 2: Initial sequences of ξ(n), where ξ ∈ J and n ≤ 6.

of the ξ ∈ J up to length six. It is interesting to note that the number
of different initial sequences of length n is

∑n
i=1 φ(i), where φ is the Euler

totient function [1].
The classification of the ξ ∈ J provided by the next theorem simplifies

the following discussion about generalized medians and weighted-sum means.
Methods similar to those developed by Eisele and Hadeler [5] can be used to
prove it.

Theorem 9.2 J is partitioned into four classes:

1. If ξ(n) = 1 for all n ≥ 1 or ξ(n) = n for all n ≥ 1, then ξ is called
extreme.
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2. If ξ(n) = bnr + 1c = dnre for all n ≥ 1, where 0 < r < 1 is irrational,
then ξ is called irrational.

3. If ξ(n) = dnκ/πe = bnκ/π − 1/πc for all n ≥ 1, where 0 < κ < π are
integers and (κ, π) = 1, then ξ is called light.

4. If ξ(n) = bnκ/π + 1c = dnκ/π + 1/πe for all n ≥ 1, where 0 < κ < π
are integers and (κ, π) = 1, then ξ is called heavy.

If ξ−(n) = dnκ/πe and ξ+(n) = bnκ/π + 1c, then ξ− and ξ+ are called
a rational pair. Since κ and π are relatively prime, ξ+(n) = ξ−(n) when
n 6= 0 mod π and ξ+(n) = ξ−(n) + 1 otherwise.

Next, median-like functions are defined using the ξ ∈ J . That discussion
is simplified by the following notation convention: Let a1 ≤ . . . ≤ an be the
n = |A| elements of the multiset A in non-decreasing order, then Ai = ai.

Definition 9.3 The following functions, h:<∗ → <, are generalize medians :

• If 0 ≤ λ ≤ 1, then h(A) = λmin(A) + (1 − λ) max(A) is an extreme
median.

• If ξ ∈ J is irrational, then h(A) = Aξ(|A|) is an irrational median.

• If ξ+, ξ− ∈ J are a rational pair and 0 ≤ λ ≤ 1, then h(A) = λAξ+(|A|)+
(1− λ)Aξ−(|A|) is a rational median.

An extreme median is a linear combination of the multiset minimum and
maximum and an irrational median simply selects one element of its mul-
tiset argument by its relative magnitude. A rational median also selects a
single element when |A| 6= 0 mod π or λ = 0 or λ = 1 but selects a linear
combination of two adjacent elements when |A| = 0 mod π and 0 < λ < 1.
The rational median with κ/π = λ = 1/2 is just the ordinary median.

Theorem 9.4 The generalized medians are means.

Extreme medians are extreme means, Theorem 5.3, so they are clearly means.
The proof that an irrational median is a mean is a simple counting argument.
Let h be an irrational median. It is easily seen to be symmetric and mono-
tonic and have the identity property. To prove that it is centralized, we must
show that h(A) ≤ h(A

⋃
B) ≤ h(B) when h(A) ≤ h(B).
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Let m = |A|, n = |B|, and C = A
⋃
B; Hence h(A) = Aξ(m), h(B) =

Bξ(n), |C| = m+n, and h(C) = Cξ(m+n). Thus, Aξ(m) ≤ Bξ(n) by assumption.
In C, there are at most ξ(m) + ξ(n) − 2 elements less than h(A) = Aξ(m):
A1, . . . , Aξ(m)−1 from A and B1, . . . , Bξ(n)−1 from B. Therefore, Ci ≥ h(A)
for all i ≥ ξ(m)+ξ(n)−1. Thus, h(C) = Cξ(m+n) ≥ h(A) because ξ(m+n) ≥
ξ(m)+ξ(n)−1 is a defining property of the almost linear functions. A similar
argument establishes that h(C) ≤ h(B) and, hence, that h is centralized.

The proof that a rational median, with λ = 0 or λ = 1, is identical to the
above. More care with the counting argument is necessary when 0 < λ < 1.

10 Weighted-Sum Means

Many recurring and important analytic forms are expressed as linear combi-
nations of variables. If the form,

h(a1, . . . , an) =
n∑
i=1

wni ai,

where the n in wni is a superscript, not an exponent, is a mean then

h(a1, . . . , an) =

(
n∑
i=1

wni a
z
i

) 1
z

is also a mean (Theorem 4.5). However, considerations of symmetry and
identity entail that wni = 1/n for all 1 ≤ i ≤ n, so these forms are just
Hölder means. A more inclusive set of forms is permitted by

Definition 10.1 A weighted-sum mean, h, is a mean expressible as

h(A) =
n∑
i=1

wni Ai, where n = |A|.

The difference between this definition and the previous one, is that symmetry
is exploited to order the elements of A by magnitude.

Theorem 10.2 The generalized medians are weighted-sum means.

Consider the three types of generalized medians in turn: When h(A) =
λmin(A)+(1−λ) max(A), then it is an extreme median. The corresponding
wni are w1

1 = 1 and wn1 = λ and wnn = 1−λ for all n > 1; all other wni = 0. The
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wni for an irrational median are wnξ(n) = 1 with all other wni = 0. For the case
of a rational median defined by the rational pair ξ− and ξ+, with (κ, π) = 1
and 0 ≤ λ ≤ 1, let wnξ−(n) = λ and wnξ+(n) = (1 − λ) when n = 0 mod π.

When n 6= 0 mod π, let ξ(n) = ξ−(n) = ξ+(n) and wnξ(n) = 1. All other
wni = 0. This established the theorem.

A tedious argument about the possible locations of zeroes among the wni
establishes the next theorem [2].

Theorem 10.3 If h is a weighted-sum mean, it is either the arithmetic av-
erage (where wni = 1/n for all 1 ≤ i ≤ n) or a generalized median.

Therefore, the class of weighted-sum means, sans the arithmetic average, and
the class of generalized medians are identical.

11 Discussion

The functions defined as means are meant to be used to estimate charac-
teristic values of population measures from samples drawn from a parent
population. That is the motivation for requiring symmetry, monotonicity,
centrality, and the identity property. A less stringent requirement, that
h(A

⋃
B) = h(A) when h(A) = h(B), is a plausible substitution for centrality.

Both variations require sensible behavior when observations are combined.
Other requirements, e.g., homogeneity, differentiability, and continuity,

can be levied for particular applications. For example, continuity was re-
quired in the discussion of distributed computations.

In the modern world, studies of which functional evaluations can be dis-
tributed and how are increasingly important as large computer ensembles
become more prevalent. In that light, a characterization of k-distributable
means is sought. Also a better characterization of the means might provide
insight into the behavior of many venerable forms used in analysis.
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