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plete and convenient programming facilities of a 
ready-made system. Typical application areas for 
LISP 2 include heuristic programming, algebraic ma­
nipulation, linguistic analysis and machine transla­
tion of natural and artificial languages, analysis of 
particle reactions in high-energy physics, artificial in­
telligence, pattern recognition, mathematical logic 
and automata theory, automatic theorem proving, 
game-playing, information retrieval, numerical com­
putation, and exploration of new programming tech­
nology. 

The primary source materials on LISP 2 are the 
LISP 2 Primer,1 which provides an introduction to 
the language for those with little or no programming 
experience, and the LISP 2 Reference Manual,2 

which provides a complete specification of the lan­
guage. 

The LISP 2 programming system provides not 
only a compiler, but also a large collection of run­
time facilities. These facilities include the library 
functions, a monitor for control and on-line interac-
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INTRODUCTION 

LISP 2 is a new programming language designed 
for use in problems that require manipulation of 
highly complex data structures as well as lengthy 
arithmetic operations. Presently implemented on the 
AN/FSQ-32V computer at the System Development 
Corporation in Santa Monica, California, LISP 2 has 
two components: the language itself, and the pro­
gramming system in which it is embedded. The sys­
tem programs that define the language are accessible 
to and modifiable by the user; thus the user has an 
unparalleled ability to shape the language to suit his 
own needs and to utilize parts ,of the system as build­
ing blocks in constructing his own programs. 

While it provides these capabilities to the do-it-
yourself programmer, LISP 2 also provides the com-

* Produced by SDC and III in performance of contract 
AF 19(628)-5166 with the Electronic Systems Division, Air 
Force Systems Command, in performance of ARPA Order 
773 for the Advanced Research Projects Agency, Informa­
tion Processing Techniques Office, and Subcontract 65-107. 
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tion, automatic storage management, and communi­
cation with the monitor system of the machine on 
which the system is operating. 

A particularly important part of the program li­
brary is a group of programs for bootstrapping LISP 
2 onto a new machine. (Bootstrapping is the standard 
method for creating a LISP 2 system on a new ma­
chine.) The bootstrapping capability is sufficiently 
powerful so that the new machine requires no resi­
dent programs other than the standard monitor sys­
tem and a binary loader. 

LISP 2 includes and extends the capabilities of its 
ancestor, LISP 1.5.3 LISP 1.5 has been notable for 
its mathematical elegance and symbol-manipulating 
capabilities. It is unique among programming lan­
guages in the ease with which programs can be 
treated as data, in its "garbage collection" approach 
to reclaiming unused storage, and in its ability to 
represent programs organized as a collection of small, 
easily understood function definitions. Full recursion 
without special user provisions is a natural outgrowth 
of the structure of the language. However, LISP 1.5 
lacks a convenient input language and efficiency in 
the treatment of purely arithmetic operations. 

LISP 2 was designed to maintain the advantages of 
LISP 1.5 while remedying its deficiencies. The first 
major change has been the introduction of two dis­
tinct language levels: Source Language (SL) and In­
termediate Language (IL). The two languages have 
different syntaxes but the same semantics (in the 
sense that for every SL program there is a computa­
tionally equivalent IL program). The syntax of SL 
resembles that of ALGOL 60,4 while the syntax of 
IL resembles that of LISP 1.5. IL is designed to have 
the same structure as data, and thus to be capable of 
being manipulated easily by user (and system) pro­
grams. An advantage of the ALGOL-like source lan­
guage is that the ALGOL algorithms can be utilized 
with little change. 

The second major change has been the introduc­
tion of type declarations and new data types, includ­
ing integer-indexed arrays and character strings. At a 
future time, packed data tables, which can presently 
be simulated through programming techniques, will 
be added. Type declarations are necessary to obtain 
efficient compiled code, particularly for arithmetic 
operations, but by using the default mechanisms, a 
programmer may omit type declarations entirely (al­
beit at the cost of efficiency). 

The third major change has been the introduction 
of partial-word extraction and insertion operators. 
Further, an IL-level macro expansion capability has 

been included, which makes possible the definition of 
operations in terms of a basic set of open-coded 
primitives. These changes made it possible to write 
the entire system in its own language without loss of 
efficiency. At the same time, the compilations of user 
programs are more economical in time, and to some 
extent in space, than they would be without these 
facilities. Furthermore, the knowledgeable user can 
trade space against time through appropriate re­
definition of system functions. 

A fourth major change, the introduction of pat­
tern-driven data manipulation facilities, along the 
lines of COMIT 5 and METEOR,6 is still in the proc­
ess of implementation. Because of the open-ended 
nature of LISP 2, these facilities can be added with­
out disrupting the existing system structure. We men­
tion this facility here, despite the fact that it does not 
yet exist, because it is an integral part of the over-all 
design of the language. Since the specifications are 
not final as of this writing, however, we shall not dis­
cuss them further. 

To orient the reader toward the exposition of the 
language, we present a short example at this point. 
Further examples will be given later. The following 
program 7 is written in SL: 

% RANDOM COMPUTES A RANDOM 
NUMBER IN THE INTERVAL (A, B) 

OWN INTEGER Y; 
R E A L F U N C T I O N R A N D O M ( A , B ) ; 

REAL A,B; 
BEGIN Y<-3125*Y; 

Y«-Y\67108864; 
RETURN (Y/67108864.0 * (B-

A)+A) 
END; 

The only significant difference between this pro­
gram and the ALGOL original is the use of the re­
verse slash " \ " to indicate the computation of the 
remainder. The corresponding program in IL is: 

(DECLARE (Y OWN INTEGER)) 
(FUNCTION (RANDOM REAL) 

( (A REAL) (BREAL)) 
(BLOCK NIL (SET Y (TIMES 3125 Y)) 

(SET Y (REMAINDER Y 67108864)) 
(RETURN (PLUS (TIMES (QUOTIENT 

Y6.7108864000E + 7) 
(DIFFERENCE B A )) A)))) 

The process of converting SL programs into com­
piled code is shown in Fig. 1. SL is first translated 
into IL by syntax translator. IL is then translated 
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Figure 1. System organization. SL == source language; IL = intermediate language; AL = assembly language. 

into assembly language by a compiler. Finally, the 
assembly language is translated into machine lan­
guage by an assembly program. The process is en­
tirely accessible to the user, in that he can write pro­
grams in IL or assembly language if he so chooses. 

The remainder of this paper is divided into two 
parts, one dealing with the language and the other 
with the implementation. Certain aspects of the lan­
guage that were intended primarily as implementa­
tion tools, e.g., open subroutines, are discussed in 
connection with the implementation. 

In discussing the language, we shall present simul­
taneous discussions of the syntax of SL and IL, ac­
companied by discussion of the semantics of both. In 
this way the semantic equivalence of SL and IL will 
become apparent. It should be borne in mind that the 
primary use of SL is for programs written by people, 
while the primary use of IL is for programs written 
by machines. Thus the syntax of SL is designed for 
convenience in writing, while the syntax of IL is 
designed to reflect in its form the structure of the 
program that it represents. 

THE LISP 2 LANGUAGE 

Tokens 

Tokens are the smallest units of input or output 
data with which LISP 2 programs ordinarily deal and 
are significant because of their role in defining the 
standard input/output conventions with regard to 
both programs and data. The major categories of 
tokens are: 

1. Delimiters 
2. Numbers 
3. Simple strings 
4. Identifiers 
5. Operators 

The delimiter tokens are: 

( ) [ ] cr 

Numbers as tokens may be either signed or unsigned 
in IL, but must be unsigned in SL since a preceding 
sign is interpreted as an operator. Some examples of 
unsigned numbers are: 

unsigned 
integer 

unsigned 
octal 

unsigned 
real 

3E5 

12Q 

.87 

14Q6 

12. 4.5E5 2.E-10 

Signed numbers are like these, but are preceded by a 
sign. Other examples of tokens are: 

identifier 
operator 

AB 

• / = 

H21 GO.TO 
>= \ + <-

A string consists of a sequence of characters delim­
ited at each end by " # " . The character " ' " inside a 
string causes the character following to be entered in 
the string. Some examples of strings are: 

# A B ( C ) D # 
# A ' # 2 5 6 ' # # 
#ISN' ' T # 

An identifier may be created from a string by preced­
ing it with the escape character. This character is 
changeable within the system but will usually be 
"%." If " % " is the escape character, the following is 
an identifier: 

% # A B ( C ) D # 

An identifier created in this way is said to have an 
"unusual spelling," since, in general, such identifiers 
will be created only when they cannot be written in 
any other way unambiguously. 

Data 

The most general form of a LISP 2 datum is an S-
expression, where the S stands for "symbolic." S-
expressions are built up from atoms, which may be 
numbers, strings, identifiers, function specifiers, and 
arrays. As in LISP 1.5, the class of S-expressions is 
defined recursively as follows: 

1. Every atom is an S-expression. 
2. If ex and e2 are S-expressions, then 

(e2 . e2) 
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is an S-expression. Thus, for instance, 

((A . B) . (C . D)) 

is an S-expression. 
S-expressions of the form: 

(ex . (e2 (e„ .NIL) . . . ) ) 

are known as lists, and can be written in the abbrevi­
ated form: 

(d e2 . . . e„) 

The e; are called the elements of the list. The two 
notations may be intermixed; thus 

((A . 1) (B . 2) . . . (Z . 26)) 

is an S-expression in the form of a list, but the ele­
ments of the list are not themselves in the form of 
lists. The atom NIL can also be written in the form 
( ) , and designates the empty list. 

The LISP functions CAR, CDR, and CONS are 
defined by: 

CAR applied to (ex . e2) yields ex 

CDR applied to (ex . e2) yields e2 

CONS applied to ex and e2 yields (ex e,) 

In terms of the list notation, CAR finds the first 
element of a list and CDR removes the first element 
from a list. Thus CAR applied to the list (A B C D) 
yields A, and CDR applied to the same list yields the 
list (B C D). CDR applied to a list of one element 
yields the empty list ( ) . The function NULL has 
value TRUE for the empty list ( ) (also represented 
as NIL) and value FALSE for anything else. The 
function CONS of two arguments can be used to add 
an element at the head of a list; thus CONS applied 
to the element A and the list ( B C D ) yields the list 
(A B C D) . CONS is the basic operator used for 
constructing lists. 

IL programs are written in the form of S-expres­
sions, and therefore can be treated as data. The abil­
ity to treat programs as data in a natural way is an 
essential feature of LISP. SL programs can also be 
treated as data, because of the existence of strings; 
however, this is not nearly so natural as it is with IL. 

Arrays are atoms because CAR and CDR are not 
defined for them. Constant arrays are written by en­
closing their elements in brackets. For example: 

[2 5 - 1 4] 

is a one-dimensional array of integers, and: 

[[A B C] [Al Bl CI] [A2 B2 C2] [A3 B3 C3]] 
is a two-dimensional array of S-expressions. 

Data Types. Although every LISP 2 datum is an 
S-expression, it is useful to pick out certain subsets 
of the set of all S-expressions and to designate these 
subsets by data type names. The data type names and 
the subsets they denote are: 

BOOLEAN 

INTEGER 
OCTAL 

REAL 
FUNCTIONAL 
SYMBOL 

type ARRAY 

Truth value data, represented by 
TRUE and FALSE. The empty 
list ( ) , the atom NIL, and the 
Boolean value FALSE are re­
garded as synonymous. 
Signed integers. 
Another form of integer, basic­
ally regarded as unsigned, that 
prints in an octal output format. 
Floating-point decimals. 
LISP 2 function. 
The entire set of S-expressions. 
Strings and identifiers must be of 
this type. 
An array whose elements are of 
the specified type, where type is 
either BOOLEAN, INTEGER, 
OCTAL, REAL, FUNCTION­
AL, or SYMBOL. 

The different data types are not mutually exclu­
sive, in that the class of data of type SYMBOL in­
cludes all other classes of data. Except for SYM­
BOL, all of the data classes include atomic data only. 

Expressions 

An expression is a designation of a datum. The 
datum designated by an expression is the value of 
the expression. The elementary components from 
which expressions are built up are constants, vari­
ables, and operational forms. We shall first discuss 
these, and then show how they are combined to form 
more complex expressions. 

Constants. A constant is a datum appearing in a pro­
gram context that denotes itself, i.e., its representa­
tion is both its name and its value. Consequently, a 
constant cannot change value during the execution 
of a program. A symbolic constant is denoted by a 
quoted S-expression. In SL, an S-expression is 
quoted by preceding it with a prime, e.g., 'ALPHA 
or '(LI L2). In IL, an S-expression is quoted by pre­
ceding it with QUOTE in a list, e.g., (QUOTE 
ALPHA) or (QUOTE(Ll L2)). Quotation is neces­
sary for identifiers and lists to prevent them from 
being interpreted as variables or operational forms. 
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Variables. A variable is also an elementary designa­
tion of a datum. However, the value of a variable 
may be changed during the execution of a program. 
A variable is normally denoted by a single identifier. 
Associated with every variable is a collection of bind­
ings, each of which is a location containing a value. 
Bindings are created by declarations, which may ap­
pear in blocks, in functions, or on the supervisor 
level (see below). Blocks and functions are the two 
different kinds of program units. At execution time, 
a program unit may be activated either by the super­
visor or by another program unit; thus there is a 
hierarchy of active program units. 

When execution of a program unit commences, a 
binding is created for each variable declared by the 
program unit. When execution of the program unit 
is completed, these bindings disappear. Thus, each 
active program unit has a set of bindings associated 
with it, and the hierarchy of bindings corresponds to 
the hierarchy of active program units. In general, the 
value of a variable is the value attached to the most 
recently created and still existing binding of that 
variable. It is possible to use an assignment action to 
change the value associated with the current binding 
of a variable. 

Associated with every variable is a type, a storage 
mode, and a transmission mode. The type of a vari­
able restricts but does not necessarily determine the 
types of the data that are its values at different times. 
In particular, a variable whose type is SYMBOL 
may assume values of any type whatsoever. 

There are three storage modes for variables: fluid, 
own, and lexical. A fluid variable can be referred to 
from outside the program unit that binds it, while a 
lexical variable cannot. Thus, fluid variables are 
more general but are also more prone to conflicts of 
names. Fluid variables are primarily used as a means 
of communication among separately compiled pro­
grams. An own variable is like a fluid variable except 
that only one binding can exist for it, and that bind­
ing must be made by a supervisor action. Own vari­
ables are designed primarily for communication with 
non-LISP 2 programs. 

A variable may designate a datum either directly 
or indirectly. If the variable designates the datum 
directly, then it designates the actual value of the 
datum; if the variable designates the datum indi­
rectly, then it designates the location in which the 
value is stored. This distinction is significant chiefly 
when a datum is being passed as an argument to a 
function; the transmission mode of the argument 

variable indicates whether a value or a location of 
a value is being passed. If a location is being passed, 
then the transmission mode is said to be locative; 
otherwise the transmission mode is said to be by 
value. 

Operational Forms. An operational form is used to 
apply a function to its arguments, to invoke a macro 
transformation, to alter the flow of a program, or to 
locate an element of an array. An operational form 
in SL is written: 

f(e1? e2,. . ., en) 

where f is the form operator and the ei are its oper= 
ands. In IL the operational form is written as: 

(f d e2. . .en) 

If the form operator designates a function, then to 
obtain the value of the operational form, the oper­
ands are first evaluated, and then the function is ap­
plied to the values so obtained. An array is handled 
similarly; the subscripts are treated as arguments of 
a function that finds the desired element of the array. 

Each function has associated with it a value type 
and a set of argument types. Any argument that is 
not of the expected type is converted to that type 
when the conversion is legal. The value type re­
stricts the type of the result of the evaluation in the 
same way that the type of a variable restricts the 
values that the variable may assume. 

In general, the order of evaluation of the operands 
of an operational form is not guaranteed. This is a 
departure from most other problem-oriented lan­
guages, but leads to improved compiled code. Also, 
with the advent of parallel processing computers it 
may be desirable to have several arguments evalu­
ated simultaneously. If evaluating an operand has 
any side effect on the evaluation of any other oper­
and, then the results of the evaluations will be un­
predictable. However, the operator ORDER applied 
to an operational form will cause the operands to 
be evaluated in order of appearance. 

Macros may be used to effect transformations of a 
program after it has been translated from SL to IL 
and before it has been compiled. When a macro 
name appears as a form operator, the effect at com­
pile time is to cause the entire operational form to 
be replaced by a new form. The new form is calcu­
lated by a function associated with the macro; the 
argument of this function is the IL version of the op­
erational form. Much of the task of compilation is 
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achieved through the use of macros that are invisible 
to the user; however, the user can also define his own 
macros. The use of macros is discussed further in 
connection with the user control facilities of the 
compiler. 

Other Expressions. Elementary expressions (i.e., 
constants, variables, and operational forms) may be 
combined in SL by means of prefix and infix opera­
tors. Thus, all of the usual arithmetic and Boolean 
expressions are permitted in the usual algebraic no­
tation. The symbolic operators CAR and CDR are 
also prefixes, which help to reduce the accumulation 
of parentheses. If a, b, and c are any expressions in 
SL, the relational expression: 

a < b < c 

and all similar forms have the same meaning in SL 
as they do in mathematics. Any number of relational 
operators can be combined in a relational expression, 
and different operators can be used in the same ex­
pression. 

Infix and prefix operators cannot be used in IL, 
and must be replaced by corresponding operational 
forms. For example: 

A * B + 3 - ALPHA f 2 
is written in IL as: 

(PLUS (TIMES A B) 3 (MINUS (EXPT 
ALPHA 2))) 

A similar notation is used for relational expressions. 
Conditional expressions in SL have the form: 

IF px THEN ex ELSE IF p2 THEN e2 ELSE 
. . . IF p„ THEN en ELSE en+1 

The final ELSE clause need not be included (unlike 
ALGOL). The corresponding form in IL is: 

(IF px d p2 e2. . .pn en en+1) 

The pi, which are Boolean expressions, are evaluated 
in turn from left to right until a true one is found. 
The value of the corresponding e} is then used as the 
value of the entire expression. Conditional expres­
sions have the useful property that evaluation pro­
ceeds only as far as necessary to determine the out­
come. 

A block expression is a block (see below) that 
appears in a context where an expression is required. 
A block expression is used to write a program as a 
sequence of statements to be executed and ultimately 
to produce a value. The value of a block is ordinarily 

specified by a RETURN statement (see below). 
LISP 2 differs from ALGOL in permitting a block to 
be an expression as well as a statement. 

A CASE expression is written in the form: 

CAoE(s, d, e2 . . ., en) 

in SL, and in the IL form: 

(CASE s ex e2 . . . en) 

where s is an integer-valued expression known as the 
selector. If the value of the selector s lies in the range 
1 < s < n, then the expression es is evaluated and is 
the value of the CASE expression. If s < 1 or s > 
n, the value is en. 

An assignment expression is written in the form: 

v <- e 

in SL and in the form: 

(SET v e) 

in IL. 
If v is a variable and e is an expression, the as­

signment expression has the effect of evaluating the 
expression e and assigning its value to v. The value 
of the entire expression is the value of e. Assignment 
expressions, like all other expressions, can be used 
as arguments in operational forms; in particular, they 
can be nested to achieve simultaneous assignment of 
value to several variables. 

The general form of the left side of an assignment 
expression is a locative expression. A locative ex­
pression designates a part of a data structure or 
variable structure. A variable is a particular case of 
a locative expression. Locative expressions can be 
used to designate the current binding of a variable, 
an element of an array, part of a list structure, or 
particular bits of a word of memory. Thus, the two 
assignments: 

A <- '(MARY DOE) ; 
CAR A ^- 'JOHN ; 

will cause the value of A to become: 

(JOHN DOE) 

Blocks and Statements 

A block may be either a block expression, a block 
statement, or a compound statement. All three of 
these are written in the same form and are evaluated 
in the same way. Whether a block is a block expres-
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sion, a block statement, or a compound statement 
depends on both the context of the block and what is 
contained within the block. 

In SL, a block is written in the form: 

BEGIN dx; d2; . . . dk; sx; s2; . . . sn END 

where the d; are block declarations and the Si are 
statements. Each block declaration specifies one or 
more internal parameters, which are variables that 
are bound while the block is active. The correspond­
ing form in IL is: 

( B L O C K S d2 . . . dk) sx s2 . . . s„) 

A statement is an action to be taken. Any expres­
sion (other than a variable) can be used as a state­
ment, but not every statement can be used as an ex­
pression. When an expression appears in a context 
where a statement is expected, the expression is eval­
uated, but the value is discarded. A statement may 
have one or more labels associated with it; these are 
referred to in GO statements (see below) and in­
dicate where to transfer control. Variables can not 
be statements because of the conflict with labels. 

When evaluation of a block begins, bindings are 
simultaneously created for each internal parameter 
specified by a block declaration. These bindings re­
main in existence until the evaluation of the block is 
completed, at which time they disappear. Each bind­
ing contains a value for the variable that it binds. 
The nature of the binding is specified by the block 
declaration that creates it. After the bindings have 
been made, execution of the statements in the block 
begins. The statements are executed in turn unless 
the sequence of control is altered by a GO statement 
or by a RETURN statement. Execution of the block 
is terminated either by executing a RETURN state­
ment or by executing the last statement of the block 
without a transfer of control. 

A block declaration in SL is in the form: 

pi P2 p3 Si, s2, . . . , sn 

The pi consist of a type, a storage mode, and a trans­
mission mode (in any order). Lexical storage and 
transmission by value are specified by omission; if 
the type is omitted, a default type is used. If all pi 
are empty, the symbol DECLARE must be used. 
Each of the Si is either the name of a variable or in 
the form: 

v <r- e 

where e is an expression giving an initial value for 
the variable v. If no initial value is given, a default 

value, depending on the type, is used. A block decla­
ration causes all the specified variables to be internal 
parameters of the block and to have the properties 
specified by the pi. 

In IL, each declaration specifies the properties of 
one and only one variable; thus, in the translation 
from SL to IL, it is necessary to break up each dec­
laration that declares more than one variable into a 
sequence of declarations (with appropriate factoring 
of properties). An IL declaration is in the form: 

(v PJ p2 p3 p4) 

where one of the properties is the initial value, if any. 
The various types of statements and their effects 

may be summarized as follows: 

1. GO statement—transfers control to the named 
statement. 

2. RETURN statement—terminates evaluation of 
a block and determines the value of a block expres­
sion. 

3. Compound statement—permits the insertion of 
a sequence of statements in a context where only a 
single statement is expected. A compound statement 
is in the form of a block with no declarations. 

4. Conditional statement—selects one of several 
possible statements to be executed on the basis of 
the truth or falsity of a sequence of Boolean expres­
sions. 

5. Simple expression—causes the evaluation of 
the expression; the value is discarded. 

6. FOR statement—causes an iteration to be per­
formed for a sequence of values of a named variable. 

7. TRY statement—causes control to be returned 
to itself if an exit condition is detected during the 
execution of a statement within the TRY statement. 

8. Block statement—like a compound statement, 
except that internal parameters may be declared in 
the same manner as in a block expression. 

9. CASE statement—selects one of several pos­
sible statements to be executed on the basis of the 
value of an integer-valued expression. 

10. Empty statement—can be used to place a 
label; contains nothing and makes no action. 

The FOR statement has some unusual features 
that merit further discussion. The statement: 

FOR v IN x DO s 

causes the statement s to be executed for each ele­
ment of the list x, with v assuming the successive 
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elements as its value in each execution of s. If ON 
is used instead of IN, v first assumes as values the 
entire list x, then its successive terminal segments 
CDR x, CDDR x, etc., until the list x is exhausted. 
The clause: 

UNLESS b 

may be inserted as part of a FOR statement to in­
hibit execution of the statement s whenever the 
Boolean expression b is TRUE. The UNTIL clause 
of ALGOL, used in conjunction with STEP, is re­
placed by a relational operator and an expression; 
iteration continues until the variable of iteration no 
longer satisfies the specified relation. This approach 
avoids the need to recompute the sign of the incre­
ment for each iteration. 

Functions 

A function definition is a specification of a com­
putational procedure; the procedure itself is a func­
tion, A function definition in SL is in the form: 

t FUNCTION n (xl5 x2, . . . , x„); d1? . . . dk; e 

where t is the type of the value of the function, n is 
the name of the function, the xt are dummy variables 
that stand for its arguments, the d ; are declarations 
governing the arguments, and e is an expression 
whose value is the value of the function. 

The corresponding form in IL is: 

(FUNCTION (n t) (dx d2 . . . dk) e) 

where a declaration is given for each argument. Thus 
the declarations not only give the properties of the 
arguments but also name them. If the value type of 
the function is omitted, then the name n can be writ­
ten without parentheses and the default type will be 
used. 

The argument parameters are used to denote the 
values of the actual arguments within the body of the 
function definition. The body of the function defini­
tion e is the expression that defines the value of the 
function. The argument declarations specify the type, 
transmission mode, and storage mode of the argu­
ments. 

Functional Data. A function may be used in either of 
two ways: as an operator or as a datum. We have 
already seen how functions can be used as form 
operators. An example of the use of a function as a 
datum would be the input to a numerical integration 

routine; the input is the function to be integrated, 
and the output is the integrand. An example oriented 
more closely to symbolic data processing would be 
the use of the LISP function MAPCAR, whose argu­
ments are a list to be transformed and a transforma­
tion function. The output of MAPCAR is the trans­
formed list. Thus 

MAPCAR ( ' ( 2 5 4 9 ) , FUNCTION ADDER 
(J) ; INTEGER J; J + 2 ) 

would evaluate to the list: 
(4 7 6 11) 

Since a function is itself a datum, it can be used 
in any context where a datum is expected. Thus, 
functions can themselves be used as arguments of 
other functions, and functions can be values of vari­
ables. A function can be designated by its definition, 
by its name, or by a variable having the function as 
its value. 

There are two contexts in which a function may be 
referenced—as a datum, as we have just said, and 
as a form operator. When a function is used as a 
form operator, it must be designated either by a 
functional variable (i.e., a variable whose values are 
functions) or by a function name. The effect of using 
a function definition as a form operator can be 
achieved by assigning the function definition to a 
functional variable (which is legitimate, since the 
function definition then appears in a data context) 
and then by using the functional variable as the form 
operator. 

Functions of an Indefinite Number of Arguments. It 
is possible to define functions that expect an indefi­
nite number of arguments. In defining such a func­
tion, there is no way to enumerate the names of the 
arguments; therefore an argument vector, i.e., a one-
dimensional array having a single variable name v, 
designates the set of arguments. The length of the 
vector is specified by a second variable k. In the 
argument list, the argument vector (which must be 
the first argument) is designated by writing v(k) in 
SL and (v INDEF k) in IL. When the function is 
entered, the value of v is the vector of arguments, 
and the value of k is the length of this vector. The 
different elements of the argument vector can then 
be referred to within the body of the definition by 
subscripted occurrences of v. 

For example, the function SUMSQUARE might 
be written to take the sum of the squares of its argu­
ments. We would then define it in SL as follows: 
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REAL FUNCTION SUMSQUARE(X(I)); 
BEGIN INTEGER J; REAL Y; 

FOR J*-l STEP 1 UNTIL > I DO 
Y«-Y + X(J) |2; 

RETURN Y 
END 

Here X is the argument-vector parameter and I is 
its length. The corresponding IL definition is: 

(FUNCTION (SUMSQUARE REAL) ((X 
INDEF I)) 

(BLOCK ((J INTEGER) (Y REAL)) 
(FOR J (STEP 1 1 GR I) 
(SET Y(PLUS Y (EXPT (X J)2)) ) ) 

(RETURN Y))) 

An actual use of SUMSQUARE might look like: 

SUMSQUARE (2, 7, 4) 
in SL, and: 

(SUMSQUARE 2 7 4) 

inlL. 

Sections 

A section is a collection of declarations and defini­
tions that operate as a unit. Dividing a large program 
into sections makes it possible to write different parts 
of the program independently without name conflicts. 
It also makes it possible for one user to refer to pro­
grams written by another user without name con­
flicts. A section is designated by its section name, 
which is an identifier. Each section is associated with 
a set of variables that designate the various entities 
defined within the section. At any given time there is 
a single active section, which is known as the current 
section; all other sections are external sections. A 
variable in a particular section, whether current or 
not, can be referred to by tailing (often called "quali­
fying") e.g., "JOE$SAM" refers to the variable JOE 
in section SAM. 

The section mechanism permits parts of LISP 2 
programs to be written and checked out independ­
ently. At merge time, attention need be paid only to 
variables used for names of common functions and 
communication variables. Since the system programs 
are in a special section, the user need not worry 
about name conflicts; at the same time, the system 
programs are accessible to the user through the tail­
ing mechanism. Thus the user can, if he chooses, 
treat the system programs as an extension of his own 
program rather than as a black box. 

Supervisor Level Operations 

LISP 2 is controlled by a supervisor program that 
is itself named LISP and that can be called as a 
function. When the user starts up the LISP system, 
the supervisor is called immediately. The supervisor 
accepts commands to perform various operations. 
The actions taken by the supervisor in response to 
these commands are known as top-level operations. 
The following top-level operations are possible: 

1. Evaluate an expression 
2. Establish a current section with given 

name and default type 
3. Create a fluid or own variable of speci­

fied type and transmission mode 
4. Define a function 
5. Define a dummy function (used to 

establish type information in certain 
cases) 

6. Define a macro 
7. Define an instruction sequence to be 

used in compilation 
8. Define an assembly-language program 
9. Declare a variable to be synonymous 

with another variable. 

The user can specify the input and output devices 
to be used; the on-line typewriter is taken as the de­
fault case. After each operation the system sends 
any necessary output to the output device and pro­
ceeds to the next operation. 

Input/Output. One of the primary design aims in 
LISP 2 I/O has been the maintenance of as much 
machine independence as possible. This is accom­
plished by distinguishing user interfaces from system 
interfaces and insulating the user from the system 
interfaces. This effect is achieved by creating ma­
chine-independent data aggregates called "files," and 
permitting the user to operate with files by means of 
LISP 2 functions. 

To the user, a file is a source or sink for informa­
tion, which is filled on output and emptied on input. 
A file itself is both device- and direction-independ­
ent. The relationship of a file to an external device 
is determined by the user at run time, when he 
specifies whether the file is to be an input file, an 
output file, or both. 

To the system, a file consists of a sequence of 
records, represented internally as an array of type 
OCTAL if the file is binary, and as a string if the file 
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is composed of characters. (ASCII 8-bit characters 
are used internally throughout LISP 2.) To reduce 
buffer storage overhead, only one record for a given 
file can be in main memory at a time. String records 
are further structured into lines. The number of char­
acters per line and lines per record may be specified 
by the user, but must be consistent with the conven­
tions used by the external monitor system. 

When a record in a file is moved from an external 
device into core, it is transformed into a LISP 2 
string. The transformation may involve character 
code conversions and insertion or deletion of control 
characters. The transformation is governed by a col­
lection of control words associated with the file. 
During output, this transformation, known as "string 
post-processing," is reversed. 

File Activation and Deactivation. A file may be ei­
ther active or inactive; an active file, in turn, may be 
either selected or deselected. No record is kept within 
LISP 2 of inactive files; however, many files may be 
active concurrently. 

A file is activated by evaluating the function 
OPEN which establishes all necessary communica­
tion linkages between LISP 2 and the monitor. The 
file is named by an identifier that is its referent 
throughout its active life. The user further specifies 
the desired file description at this time. This descrip­
tion is given only once and consists of a list of file 
properties desired by the user, such as the unit (tape, 
disc, teletype, CRT, etc.), form (binary, ASCII, 
BCD, etc.), format (line and record sizes), and vari­
ous protection and identification parameters. 

Deactivation of a file is achieved by evaluating the 
function SHUT. SHUT breaks all the communication 
linkages and deletes all internal structures such as 
arrays, strings, and variables that were dynamically 
established by OPEN. The user may specify the dis­
position of the file, e.g., the saving of the tape or the 
insertion of the file in disc inventory. The external 
monitor is informed of such actions by LISP 2. 

File Selection. At any given time, exactly one file is 
selected for input and one for output; all other active 
files are deselected. The LISP 2 reading functions all 
operate on the currently selected input file; the print­
ing functions all operate on the currently selected 
output file. The functions INPUT and OUTPUT are 
used for selecting the input file and the output file, 
respectively. 

When a new file is selected, the record, line, and 
column controls for the deselected (replaced) file are 
preserved, and the new file record, line, and column 

controls are reestablished. Once a file is selected, all 
I /O primitives act only on that file. Thus it is pos­
sible to write a LISP 2 program that is independent 
of form, format, and device by supplying the name of 
the file as an argument of the program at run time. 
This scheme allows a LISP program to be debugged 
with files generated on-line and subsequently run 
with bulk data from tape or disc files simply by 
changing the selected file. 

Other I/O Functions. A variety of I /O functions are 
available for reading and writing binary and symbolic 
data. There are character-level primitives that permit 
testing, printing, reading, and transforming char­
acters. Other functions allow reading and printing at 
the token and S-expression levels. Character map­
pings permit LISP 2 to communicate with restricted 
character-set devices. 

Examples 

An example is now given of a complete SL pro­
gram. The example includes not only the program 
itself but also the control actions necessary to test it: 

SYMBOL SECTION EXAMPLES, LISP; 
% LCS FINDS THE LONGEST COMMON SEG-
% MENT OF TWO LISTS LI AND L2 
FUNCTION LCS(L1,L2); SYMBOL LI, L2; 

BEGIN SYMBOL X, Y, BEST «- NIL; INTE­
GER K*-0, N, LX^-LENGTH(Ll); 

FOR X ON LI WHILE LX > K DO 
BEGIN INTEGER LY <- LENGTH (L2); 

FOR Y ON L2 WHILE LY > K DO 
BEGIN N «- COMSEGL (X,Y); 

IF N < = K THEN GO A; 
K * - N ; 
BEST *- COMSEG (X,Y); 

A: LY <- LY — 1 
END; 
LX ^- LX - 1 

END; 
RETURN BEST; 

END; 
% COMSEGL FINDS THE LENGTH OF THE 
% LONGEST INITIAL COMMON SEGMENT 
% OF 
% TWO LISTS X AND Y. 

INTEGER FUNCTION COMSEGL (X,Y); 
IF NULL X OR NULL Y OR CAR X /= 

CAR Y 
THEN O ELSE COMSEGL (CDR X, CDR 

Y) + 1; 
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% COMSEG FINDS THE LONGEST INITIAL 
% COMMON SEGMENT OF TWO LISTS X 
% AND Y 

SYMBOL FUNCTION COMSEG (X, Y); 
IF NULL X OR NULL Y OR CAR X / = 

CAR Y 
THEN NIL ELSE CAR X . COMSEG(CDR 

X, CDR Y); 
% LENGTH COMPUTES THE LENGTH OF L 

INTEGER FUNCTION LENGTH (L); SYM­
BOL L; 

BEGIN INTEGER K «- O; SYMBOL LI; 
FOR LI IN L DO K <- K + 1 ; 
RETURN K; 

END; 
LCS ('(A B C B C D E ) , ' ( B C D A B C D E F ) ) ; 

STOP 
machine: (B C D E) 

This example illustrates the use of list processing 
capabilities combined with integer arithmetic and 
iteration. The operator " < = " means "less than or 
equal to," and the operator " / = " means "not equal 
to." The LISP operators CAR, CDR, and NULL are 
all used as prefix operators without parentheses. The 
dot in the third line of COMSEG is an infix operator 

that stands for the LISP function CONS. The state­
ment "FOR X ON L I " causes iteration to take 
place on the successive terminal segments of LI . 
Thus, if LI is the list ( A B C D), then iteration takes 
place successively on (A B C D), (B C D), (C D), 
and (D). The function LENGTH, defined here, is 
available as a system function and is redefined only 
as an illustration. 

THE PROGRAMMING SYSTEM 

System Overview 

A diagram of the LISP 2 system which shows the 
relationship among its different components is 
shown in Fig. 2. Information enters the system via 
the I /O package in either SL or IL. The I /O pack­
age transforms the input into a stream of characters 
—the input to the finite state machine—which in 
turn generates a stream of tokens. Among other 
things, the finite state machine performs the task of 
linking up a newly received identifier with a previous 
copy of the same identifier. The token stream pro­
duced by the finite state machine is routed by the 
supervisor to either the syntax translator or to a 
reading program for IL, depending on whether SL 
or IL is expected. In either case, the result is an ex-
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Figure 2. System components and information flow paths (unlabeled connections designate control paths). 
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pression in IL. The supervisor determines when 
compilation is to take place, and also handles proc­
essing requests. 

The syntax translator takes a stream of SL tokens 
and transforms it into an IL expression. This expres­
sion can be returned as output, passed to the com­
piler, or both. The choice is made by the supervisor 
under the control of the user. The syntax translator 
consists of parsing and generating programs that are 
compiled from a set of syntax equations. These syn­
tax equations define SL in terms of IL. 

The compiler, which is the most complex compo­
nent of the system, converts IL into input for LAP, 
the LISP Assembly Program, or for the core image 
generator. Both LAP and the core image generator 
accept input in assembly language (AL). If LAP is 
being used, then the result of assembly is a relocat­
able segment of code stored in an area of the ma­
chine reserved for binary program. If the core image 
generator is being used, then the result is a string of 
pairs of binary numbers, each consisting of a core 
location and the contents of that location, stored on a 
magnetic tape or other external medium. The core 
image generator is only used when a new system is 
being created. 

The META compiler, the garbage collector, and 
the primitives are all implicitly involved in the opera­
tion of the system. The META compiler is a library 
program that generates a syntax translator from a 
set of syntax equations. The garbage collector is the 
program that collects dead storage when available 
storage has been exhausted. The primitives are the 
basic library functions in terms of which the entire 
system is written. 

Memory Management 

Most of the concepts of memory management 
used in LISP 1.5 are also used in LISP 2. Memory 
management in LISP 2 is based on several consid­
erations: 

1. LISP 2 data structures may vary in 
size by orders of magnitude at run 
time, and storage for such data struc­
tures must be allocated automatically. 

2. Since recursion is permitted, successive 
generations of data structures must be 
retained simultaneously. 

3. Programs and data structures that are 
no longer needed must be purged with­
out explicit action on the part of the 
user. 

4. Numerical data must be stored in such 
a way as to permit efficient numerical 
calculations. 

LISP 2 data structures may be either variable or 
fixed in size. The variable data structures are arrays, 
strings, and symbolic expressions. Although an array, 
once established, does not change in size, the size of 
an array is frequently not known until the occasion 
arises to create it. In the case of list structures, the 
situation is even more complex; a list structure may 
be modified in such a way as to increase or decrease 
its size. 

Arguments of functions and internal parameters of 
blocks are stored on a pushdown stack. Since all 
temporary storage belonging to LISP 2 functions is 
recorded on the pushdown stack, which is main­
tained by the LISP 2 system, recursion is permitted 
with no special user provisions. Unlike LISP 1.5, 
LISP 2 stores numbers directly on the pushdown 
stack as single cells. Therefore, it is possible to per­
form arithmetic without the loss of efficiency that 
would arise from packing and unpacking numbers 
referenced indirectly. Symbolic expressions, strings, 
and arrays, however, are accessed by means of 
pointers stored in the stack. The data structures thus 
pointed to are discarded when the function creating 
them has completed its execution; however, they do 
not disappear, but remain as garbage until the next 
garbage collection, the description of which follows. 

In LISP 2, data structures are grouped according 
to their storage characteristics and a storage area is 
set aside for each group. The groups are: 

1. Elementary symbolic entities (symbolic 
constants, function and variable names, 
etc.) 

2. Compiled programs 
3. List structures 
4. Arrays and strings 

In addition, a storage area is set aside for the 
pushdown stack. These storage areas are arranged in 
pairs, where one member of the pair grows from the 
bottom up and the other grows from the top down. 
Data storage is obtained by taking storage space from 
the appropriate area until that area is exhausted 
(which occurs when its boundary meets the boundary 
of the area that is paired with it). At this point, the 
garbage collector is invoked. Garbage collection 
erases all inaccessible data structures and reclaims 
the emptied space for new structures. For instance, 
if a LISP 2 function has been redefined, the program 
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corresponding to its old definition is inaccessible and 
thus is erased. During garbage collection, the differ­
ent areas are compacted, relocating code and/or data 
structures, if necessary, so as to eliminate the gaps 
left by erased structures. 

The different kinds of structures are stored in 
different areas because their requirements in terms 
of garbage collection are different. For instance, the 
elementary symbolic entities cannot be moved, but 
other kinds of data can be moved. Similarly, list 
structures consist of independent nodes, while arrays 
consist of blocks of different sizes. 

The Syntax Translator and 
the MET A Compiler 

The translation from SL to IL is performed by a 
syntax translator that was generated by the META 
compiler. The META compiler is based upon a pro­
gram developed by Special Interest Group for Pro­
gramming Languages of the Los Angeles Chapter of 
ACM.8 The META compiler takes as input a speci­
fication of the syntax of SL, together with instruc­
tions on how each syntactic entity is to be trans­
formed to IL. It produces an IL program that 
actually carries out the translation from SL to IL. 
The description of the syntax of SL is given in an 
extended version of Backus-Naur Form.4 

The META compiler produces top-to-bottom 
compilers with a controlled backup feature and an 
interface with the finite state machine (see below). 
Both the controlled backup and the finite state ma­
chine are efficiency features. The controlled backup 
allows the designer of a language to specify in the 
syntax equations when the state of the machine must 
be saved because two or more parsings start with the 
same construction. 

As it is possible to regenerate the syntax translator 
with new syntax equations at any time, the syntax 
and semantics of SL are not, in principle, rigidly 
fixed. In practice, variants on the syntax translator 
will be used in order to translate other languages into 
LISP 2 IL. These other languages, unlike SL, will 
normally not be semantically equivalent to IL. 

Finite State Machine 

The finite state machine (FSM) is a token-parsing 
program used by the syntax translator and the S-
expression reader. Reading LISP 2 entities is ex­
pensive, not only in the original creation of the 
internal structures, but also in the time spent in 

garbage collecting when the structures are discarded. 
Consequently, it is desirable to avoid backup at the 
character level and its resulting re-creation of dupli­
cate structures. Since backup must be used by the 
syntax translator, the FSM was imposed between it 
and the character stream to eliminate reprocessing of 
tokens. Having the bottom-to-top FSM interface with 
the top-to-bottom syntax translator eliminates a large 
portion of the overhead associated with reading in 
the LISP 2 system. The S-expression reader does not 
require backup, but since the FSM existed, it was 
convenient to use tokens for building S-expressions 
also, 

The FSM behaves like a Turing machine. It moves 
from state to state as it reads characters; when a 
terminal state is reached, it "prints" a character from 
its output alphabet (tokens) and sets its state to the 
initial one. Parsing and manufacture of structures are 
done simultaneously as characters are recognized. 
No reprocessing of the parsed characters is ever nec­
essary, since in a terminal state the token is already 
complete (except for a final action, such as combin­
ing the parts of a real number). 

The LISP 2 Compiler 

The LISP 2 compiler is a large, one-pass, optimiz­
ing translator whose input is a function definition in 
IL and whose output is an assembly-language list of 
instructions suitable for input to LAP. Most of the 
compiler is independent of the target machine, since 
the compilation concepts themselves are machine-
independent. The declarations of all fluid variables 
appearing within the function are written into the 
output listing, since these must agree with fluid vari­
able declarations made elsewhere. Checks are made 
for both format and semantic errors during compila­
tion. The compiler consists of three major sections: 
the analyzer, the optimizer, and the user control 
functions. 

Analyzer. The top-level control of the compiler re­
sides in the analyzer, which operates recursively. 
Each item to be compiled is passed to the analyzer 
either directly or indirectly. If the item is a variable, 
an appropriate declaration is found and code for 
retrieving the variable is generated; otherwise the 
code for a function call is generated, a macro expan­
sion is performed and the result compiled, or linkage 
to an appropriate code generator is made. A pattern-
matching function has been implemented for use in 
the LISP 2 compiler. The patterns are written in a 
modified form of Backus-Naur Form (not the same 
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as the one used in the syntax translator). The pat­
terns are matched to an S-expression and the value of 
the match is either TRUE or FALSE. The pattern-
matching function checks for syntactic correctness 
and distinguishes among different forms at the same 
time. 

Optimizer. Optimization of the code produced by the 
LISP 2 compiler is handled by many groups of 
routines, each responsible for certain actions. The 
communicative mechanisms between these various 
parts and the rest of the compiler will be described in 
some detail below. 

The movers, a highly machine-dependent set of 
functions, produce code that alters the state of a 
compilation in a specified way, such as moving an 
object to an accumulator or converting a datum to a 
specific type. Embodied in the movers is a predicate 
capability that answers the question, "Is this move 
possible under these conditions (say, one machine 
instruction)?" The movers are used to build all ad­
dress and modifier fields of generated instructions. 
Associated with the movers is a post-processor that 
rewrites the output code after the main compiler has 
produced it. Redundant load-store sequences and 
some unnecessary branches are removed from the 
listing. Also, certain groups of instructions are re­
written to make use of machine-specific instructions. 

The arithmetic optimization package handles code 
generation for addition and multiplication. The algo­
rithm that is used is a standard one, namely, first 
sorting the arguments by type and then by priority 
sequence within a particular type. The sequence de­
pends on whether the arguments are memory or ac­
cumulator references. A single set of functions 
handles both multiplication and addition, with the 
aid of several functional arguments. 

A second kind of optimization has to do with the 
elimination of unnecessary transfer instructions. This 
task is accomplished through the analysis of conflu­
ence points, i.e., places in the program at which 
several paths of control converge. For instance, con­
sider the conditional expression: 

(IF pi ex p2 e2 . . . pn en) 

The appearance of this conditional expression 
establishes a confluence point at the end of the com­
piled code that represents it. After the execution of 
any of the es, control goes to this confluence point. 
Moreover, the confluence point is hereditary for each 
of the e ;, i.e., if one of the e; is a conditional expres­
sion, then its confluence point is the same as that of 

the entire expression. Analogous considerations hold 
for conditional statements. Confluence points are also 
hereditary with respect to RETURN statements of 
blocks, i.e., the confluence point of a RETURN 
statement is the same as that of the block in which it 
appears. 

When an expression is compiled, the character­
istics of the value that is produced must be specified. 
These characteristics include type, whether it is in a 
special register or in an ordinary memory cell, its 
address modifier (direct or indirect), which registers 
it may be left in, whether the actual value is needed 
or whether the negative or reciprocal of the value is 
so described, etc. These characteristics are remem­
bered by a set of state variables, which are bound 
for each call to the analyzer. As a statement or ex­
pression is compiled, a listing is generated and the 
state variables set to reflect the state of the compila­
tion. The compiler is passive in the sense that a com­
pilation produces only the minimum amount of code 
necessary to allow the result to be described by the 
state variables. 

User Control Facilities. The user can give the com­
piler explicit instructions to aid in the compilation 
process. As in LISP 1.5, macros are an integral part 
of the language. Many of the facilities of the lan­
guage, e.g., FOR statements, are implemented by 
means of system macros. When a FOR statement (in 
IL form) is encountered during compilation, it ap­
pears as an operational form whose operator is FOR. 
The compiler tests each form operator to see if a 
macro is defined for it. In the case of FOR, there is 
such a macro. The macro is invoked with the FOR 
statement (in the form of an S-expression) as input. 
The output is a block containing an equivalent itera­
tive loop. This block is then compiled in place of the 
FOR statement. Macros may also be defined by the 
user, and no distinction is made between system 
macros and user macros. 

Certain machine-dependent operators are partic­
ularly useful as primitives in compilation. CORE is 
an operator that acts like an array whose content is 
all of the machine memory. Therefore CORE(x) is 
the content of location x. BIT is an operator that 
specifies a certain contiguous portion of a word. 
There are also several operators that permit an ex­
pression to be forced to a certain type or permit a 
datum of one type to be used as though it were of 
another type. Although such mechanisms exist in 
most compilers, LISP 2 has made these items avail­
able through the language. 
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The LISP 2 Assembly Program 

The LISP 2 Assembly Program, LAP, is a pro­
gram that generates a code segment from a list of 
symbolic instructions and labels. LAP also allocates 
storage for variables on the pushdown stack, and 
insures that references to fluid and own variables are 
consistent among different compiled functions. LAP 
does more than most assemblers, in that it handles all 
aspects of pushdown stack mechanics; consequently, 
references to variables are made by naming the vari­
able in the appropriate field of any instruction that 
references it. Thus, the pushdown stack need never 
be referenced explicitly. 

LAP includes a number of system macros specifi­
cally designed for LISP 2 programming. The pro­
logue and epilogue of a function are generated by 
BEGIN and RETURN respectively; CALL is used 
to generate a call to a LISP 2 function in the stand­
ard format. Storage allocation on the pushdown stack 
is performed by the BLOCK, DECLARE, and END 
macros; FLBIND creates any necessary bindings for 
fluid variables. LAP does not have a generalized 
macro facility; any effect that could be achieved by 
such a facility, however, can also be achieved by 
preprocessing. 

The address field of an instruction may be used to 
allocate, refer to, or release temporary storage on the 
pushdown stack. The address fields TOP. and POP. 
are normally used with instructions of the "load" 
type. Both TOP. and POP. refer to the most recently 
allocated pushdown cell, but POP. has the additional 
effect of releasing that cell. PUSHA. and PUSHP. 
both cause a new pushdown cell to be allocated, and 
refer to that cell; PUSHA. and PUSHP. are normally 
used in instructions of the "store" type. PUSHA. is 
used for absolute quantities and PUSHP. for sym­
bolic quantities, so that a map of the pushdown stack 
can be maintained. 

To illustrate the use of assembly language, as well 
as the output code produced by the compiler, we give 
the Q32 assembly language version of the program 
RANDOM presented as an example earlier in the 
paper: 

(LAP (FUNCTION (RANDOM REAL) 
((A REAL) (B REAL)) 
(STF TOP.) 
(BEGIN) 
(LDA Y) 
(MUL 3125 (L567.7 R S ) ) 
(STB Y) 

(ARGS) 
(LDA Y) 
(STF PUSHA.) 
(LDA (NUMBER 67108864) S) 
(CALL (REMAINDER . LISP)) 
(STF Y) 
(LDC A) 
(FAD B) 
(STF PUSHA.) 
(LDA Y) 
(FLT (ENTRY B48.)) 
(FDV (NUMBER 6.7108864000E-7)) 
(FMPPOP.)(FAD A) GO9017 (END) (RE­

TURN)) 
(((REMAINDER . LISP) FUNCTION (FUNC­

TIONAL INTEGER INTEGER INTEGER) 
NIL) (Y OWN INTEGER NIL)) USER) 
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