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INTRODUCTION

LISP 2 is a new programming language designed
for use in problems that require manipulation of
highly complex data structures as well as lengthy
arithmetic operations. Presently implemented on the
AN/FSQ-32V computer at the System Development
Corporation in Santa Monica, California, LISP 2 has
two components: the language itself, and the pro-
gramming system in which it is embedded. The sys-
tem programs that define the language are accessible
to and modifiable by the user; thus the user has an
unparalleled ability to shape the language to suit his
own needs and to utilize parts of the system as build-
ing blocks in constructing his own programs.

While it provides these capabilities to the do-it-
yourself programmer, LISP 2 also provides the com-
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plete and convenient programming facilities of a
ready-made system. Typical application areas for
LISP 2 include heuristic programming, algebraic ma-
nipulation, linguistic analysis and machine transla-
tion of natural and artificial languages, analysis of
particle reactions in high-energy physics, artificial in-
telligence, pattern recognition, mathematical logic
and automata theory, automatic theorem proving,
game-playing, information retrieval, numerical com-
putation, and exploration of new programming tech-
nology.

The primary source materials on LISP 2 are the
LISP 2 Primer,' which provides an introduction to
the language for those with little or no programming
experience, and the LISP 2 Reference Manual,?
which provides a complete specification of the lan-
guage.

The LISP 2 programming system provides not
only a compiler, but also a large collection of run-
time facilities. These facilities include the library
functions, a monitor for control and on-line interac-
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tion, automatic storage management, and communi-
cation with the monitor system of the machine on
which the system is operating.

A particularly important part of the program li-
brary is a group of programs for bootstrapping LISP
2 onto a new machine. (Bootstrapping is the standard
method for creating a LISP 2 system on a new ma-
chine.) The bootstrapping capability is sufficiently
powerful so that the new machine requires no resi-
dent programs other than the standard monitor sys-
tem and a binary loader.

LISP 2 includes and extends the capabilities of its
ancestor, LISP 1.5.2 LISP 1.5 has been notable for
its mathematical elegance and symbol-manipulating
capabilities. It is unique among programming lan-
guages in the ease with which programs can be
treated as data, in its “garbage collection” approach
to reclaiming unused storage, and in its ability to
represent programs organized as a collection of small,
easily understood function definitions. Full recursion
without special user provisions is a natural outgrowth
of the structure of the language. However, LISP 1.5
lacks a convenient input language and efficiency in
the treatment of purely arithmetic operations.

LISP 2 was designed to maintain the advantages of
LISP 1.5 while remedying its deficiencies. The first
major change has been the introduction of two dis-
tinct language levels: Source Language (SL) and In-
termediate Language (IL). The two languages have
different syntaxes but the same semantics (in the
sense that for every SL program there is a computa-
tionally equivalent IL program). The syntax of SL
resembles that of ALGOL 60,* while the syntax of
IL resembles that of LISP 1.5. IL is designed to have
the same structure as data, and thus to be capable of
being manipulated easily by user (and system) pro-
grams. An advantage of the ALGOL-like source lan-
guage is that the ALGOL algorithms can be utilized
with little change.

The second major change has been the introduc-
tion of type declarations and new data types, includ-
ing integer-indexed arrays and character strings. At a
future time, packed data tables, which can presently
be simulated through programming techniques, will
be added. Type declarations are necessary to obtain
efficient compiled code, particularly for arithmetic
operations, but by using the default mechanisms, a
programmer may omit type declarations entirely (al-
beit at the cost of efficiency).

The third major change has been the introduction
of partial-word extraction and insertion operators.
Further, an IL-level macro expansion capability has

been included, which makes possible the definition of
operations in terms of a basic set of open-coded
primitives. These changes made it possible to write
the entire system in its own language without loss of
efficiency. At the same time, the compilations of user
programs are more economical in time, and to some
extent in space, than they would be without these
facilities. Furthermore, the knowledgeable user can
trade space against time through appropriate re-
definition of system functions.

A fourth major change, the introduction of pat-
tern-driven data manipulation facilities, along the
lines of COMIT ° and METEOR,? is still in the proc-
ess of implementation. Because of the open-ended
nature of LISP 2, these facilities can be added with-
out disrupting the existing system structure. We men-
tion this facility here, despite the fact that it does not
yet exist, because it is an integral part of the over-all
design of the language. Since the specifications are
not final as of this writing, however, we shall not dis-
cuss them further.

To orient the reader toward the exposition of the
language, we present a short example at this point.
Further examples will be given later. The following
program ° is written in SL:

% RANDOM COMPUTES A RANDOM
NUMBER IN THE INTERVAL (A, B)
OWN INTEGER Y;
REAL FUNCTION RANDOM(A,B);
REAL A,B;
BEGIN Y«3125*Y;
Y <Y\ 67108864
RETURN (Y/67108864.0 * (B—
A)+A)
END;

The only significant difference between this pro-
gram and the ALGOL original is the use of the re-
verse slash “\” to indicate the computation of the
remainder. The corresponding program in IL is:

(DECLARE (Y OWN INTEGER))
(FUNCTION (RANDOM REAL)

((A REAL) (B REAL))

(BLOCK NIL (SET Y (TIMES 3125 Y))
(SET Y (REMAINDER Y 67108864))
(RETURN (PLUS (TIMES (QUOTIENT

Y 6.7108864000E +7)
(DIFFERENCE B A )) A))))

The process of converting SL. programs into com-
piled code is shown in Fig. 1. SL is first translated
into IL by syntax translator. IL is then translated
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Figure 1. System organization. SL = source language: I. = intermediate language; AL = assembly language.
into assembly language by a compiler. Finally, the unsigned
assembly language is translated into machine lan- integer 1 2 3ES
guage by an assembly program. The process is en- unsigned
tirely accessible to the user, in that he can write pro- octal 120 1406
grams in IL or assembly language if he so chooses. unsigned
The remainder of this paper is divided into two real 87 12. 4.5E5 2 E-10

parts, one dealing with the language and the other
with the implementation. Certain aspects of the lan-
guage that were intended primarily as implementa-
tion tools, e.g., open subroutines, are discussed in
connection with the implementation.

In discussing the language, we shall present simul-
taneous discussions of the syntax of SL and IL, ac-
companied by discussion of the semantics of both. In
this way the semantic equivalence of SL and IL will
become apparent. It should be borne in mind that the
primary use of SL is for programs written by people,
while the primary use of IL is for programs written
by machines. Thus the syntax of SL is designed for
convenience in writing, while the syntax of IL is
designed to reflect in its form' the structure of the
program that it represents.

THE LISP 2 LANGUAGE
Tokens

Tokens are the smallest units of input or output
data with which LISP 2 programs ordinarily deal and
are significant because of their role in defining the
standard input/output conventions with regard to
both programs and data. The major categories of
tokens are:

Delimiters
Numbers
Simple strings
Identifiers

5. Operators

L\

The delimiter tokens are:

()[1 er

Numbers as tokens may be either signed or unsigned
in IL, but must be unsigned in SL since a preceding
sign is interpreted as an operator. Some examples of
unsigned numbers are:

Signed numbers are like these, but are preceded by a
sign. Other examples of tokens are:

identifier AB H21 GO.TO
operator L= r>=N\+ o«

A string consists of a sequence of characters delim-
ited at each end by “#”. The character “’ ” inside a
string causes the character following to be entered in
the string. Some examples of strings are:

#AB(C)D#
HAH56 4
#ISN’ T#

An identifier may be created from a string by preced-
ing it with the escape character. This character is
changeable within the system but will usually be
“% . If “%” is the escape character, the following is
an identifier:

% #AB(C)D#

An identifier created in this way is said to have an
“unusual spelling,” since, in general, such identifiers
will be created only when they cannot be written in
any other way unambiguously.

Data

The most general form of a LISP 2 datum is an S-
expression, where the S stands for “symbolic.” S-
expressions are built up from atoms, which may be
numbers, strings, identifiers, function specifiers, and
arrays. As in LISP 1.5, the class of S-expressions is
defined recursively as follows:

1. Every atom is an S-expression.
2. If ¢, and e, are S-expressions, then

(61 . €
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is an S-expression. Thus, for instance,
((A.B).(C.D)

is an S-expression.
S-expressions of the form:

(er.(ex. ... . (en .NIL) ... ))

are known as lists, and can be written in the abbrevi-
ated form:

(el € ... en)

The e; are called the elements of the list. The two
notations may be intermixed; thus

A.1HDB.2)...Z.20)

is an S-expression in the form of a list, but the ele-
ments of the list are not themselves in the form of
lists. The atom NIL can also be written in the form
(), and designates the empty Iist.

The LISP functions CAR, CDR, and CONS are
defined by:

CAR applied to (e, . e,) yields e,
CDR applied to (e, . e.) yields ¢,
CONS applied to e, and e, yields (e, . €,)

In terms of the list notation, CAR finds the first
element of a list and CDR removes the first element
from a list. Thus CAR applied to the list (A B C D)
yields A, and CDR applied to the same list yields the
list (B C D). CDR applied to a list of one element
yields the empty list ( ). The function NULL has
value TRUE for the empty list ( ) (also represented
as NIL) and value FALSE for anything else. The
function CONS of two arguments can be used to add
an element at the head of a list; thus CONS applied
to the element A and the list (B C D) yields the list
(A B C D). CONS is the basic operator used for
constructing lists.

IL programs are written in the form of S-expres-
sions, and therefore can be treated as data. The abil-
ity to treat programs as data in a natural way is an
essential feature of LISP. SL programs can also be
treated as data, because of the existence of strings;
however, this is not nearly so natural as it is with IL.

Arrays are atoms because CAR and CDR are not
defined for them. Constant arrays are written by en-
closing their elements in brackets. For example:

[25-14]
is a one-dimensional array of integers, and:

[[A B C] [A1 B1 C1] [A2 B2 C2] [A3 B3 C3]]
is a two-dimensional array of S-expressions.

Data Types. Although every LISP 2 datum is an
S-expression, it is useful to pick out certain subsets
of the set of all S-expressions and to designate these
subsets by data type names. The data type names and
the subsets they denote are:

BOOLEAN Truth value data, represented by
TRUE and FALSE. The empty
list (), the atom NIL, and the
Boolean value FALSE are re-
garded as synonymous.

INTEGER Signed integers.

OCTAL Another form of integer, basic-
ally regarded as unsigned, that
prints in an octal output format.

REAL Floating-point decimals.

FUNCTIONAL  LISP 2 function.

SYMBOL The entire set of S-expressions.
Strings and identifiers must be of
this type.

type ARRAY An array whose elements are of

the specified type, where type is
either BOOLEAN, INTEGER,
OCTAL, REAL, FUNCTION-
AL, or SYMBOL.

The different data types are not mutually exclu-
sive, in that the class of data of type SYMBOL in-
cludes all other classes of data. Except for SYM-
BOL, all of the data classes include atomic data only.

Expressions

An expression is a designation of a datum. The
datum designated by an expression is the value of
the expression. The elementary components from
which expressions are built up are constants, vari-
ables, and operational forms. We shall first discuss
these, and then show how they are combined to form
more complex expressions.

Constants. A constant is a datum appearing in a pro-
gram context that denotes itself, i.e., its representa-
tion is both its name and its value. Consequently, a
constant cannot change value during the execution
of a program. A symbolic constant is denoted by a
quoted S-expression. In SL, an S-expression is
quoted by preceding it with a prime, e.g., "ALPHA
or ‘(L1 L2). In IL, an S-expression is quoted by pre-
ceding it with QUOTE in a list, e.g., (QUOTE
ALPHA) or (QUOTE(L1 L2)). Quotation is neces-
sary for identifiers and lists to prevent them from
being interpreted as variables or operational forms,
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Variables. A variable is also an elementary designa-
tion of a datum. However, the value of a variable
may be changed during the execution of a program.
A variable is normally denoted by a single identifier.
Associated with every variable is a collection of bind-
ings, each of which is a location containing a value.
Bindings are created by declarations, which may ap-
pear in blocks, in functions, or on the supervisor
level (see below). Blocks and functions are the two
different kinds of program units. At execution time,
a program unit may be activated either by the super-
visor or by another program unit; thus there is a
hierarchy of active program units.

When execution of a program unit commences, a
binding is created for each variable declared by the
program unit. When execution of the program unit
is completed, these bindings disappear. Thus, each
active program unit has a set of bindings associated
with it, and the hierarchy of bindings corresponds to
the hierarchy of active program units. In general, the
value of a variable is the value attached to the most
recently created and still existing binding of that
variable. It is possible to use an assignment action to
change the value associated with the current binding
of a variable.

Associated with every variable is a type, a storage
mode, and a transmission mode. The type of a vari-
able restricts but does not necessarily determine the
types of the data that are its values at different times.
In particular, a variable whose type is SYMBOL
may assume values of any type whatsoever.

There are three storage modes for variables: fluid,
own, and lexical. A fluid variable can be referred to
from outside the program unit that binds it, while a
lexical variable cannot. Thus, fluid variables are
more general but are also more prone to conflicts of
names. Fluid variables are primarily used as a means
of communication among separately compiled pro-
grams. An own variable is like a fluid variable except
that only one binding can exist for it, and that bind-
ing must be made by a supervisor action. Own vari-
ables are designed primarily for communication with
non-LISP 2 programs.

A variable may designate a datum either directly
or indirectly. If the variable designates the datum
directly, then it designates the actual value of the
datum; if the variable designates the datum indi-
rectly, then it designates the location in which the
value is stored. This distinction is significant chiefly
when a datum is being passed as an argument to a
function; the transmission mode of the argument

variable indicates whether a value or a location of
a value is being passed. If a location is being passed,
then the transmission mode is said to be locative;
otherwise the transmission mode is said to be by
value.

Operational Forms. An operational form is used to
apply a function to its arguments, to invoke a macro
transformation, to alter the flow of a program, or to
locate an element of an array. An operational form
in SL is written:

f(ey, €25. .., €0)
where f is the form operator and the e; are its oper-

ands. In IL the operational form is written as:
(fee...e)

If the form operator designates a function, then to
obtain the value of the operational form, the oper-
ands are first evaluated, and then the function is ap-
plied to the values so obtained. An array is handled
similarly; the subscripts are treated as arguments of
a function that finds the desired element of the array.

Each function has associated with it a value type
and a set of argument types. Any argument that is
not of the expected type is converted to that type
when the conversion is legal. The value type re-
stricts the type of the result of the evaluation in the
same way that the type of a variable restricts the
values that the variable may assume.

In general, the order of evaluation of the operands
of an operational form is not guaranteed. This is a
departure from most other problem-oriented lan-
guages, but leads to improved compiled code. Also,
with the advent of parallel processing computers it
may be desirable to have several arguments evalu-
ated simultaneously. If evaluating an operand has
any side effect on the evaluation of any other oper-
and, then the results of the evaluations will be un-
predictable. However, the operator ORDER applied
to an operational form will cause the operands to
be evaluated in order of appearance.

Macros may be used to effect transformations of a
program after it has been translated from SL to IL
and before it has been compiled. When a macro
name appears as a form operator, the effect at com-
pile time is to cause the entire operational form to
be replaced by a new form. The new form is calcu-
lated by a function associated with the macro; the
argument of this function is the IL version of the op-
erational form. Much of the task of compilation is
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achieved through the use of macros that are invisible
to the user; however, the user can also define his own
macros. The use of macros is discussed further in
connection with the user control facilities of the
compiler.

Other Expressions. Elementary expressions (ie.,
constants, variables, and operational forms) may be
combined in SL by means of prefix and infix opera-
tors. Thus, all of the usual arithmetic and Boolean
expressions are permitted in the usual algebraic no-
tation. The symbolic operators CAR and CDR are
also prefixes, which help to reduce the accumulation
of parentheses. If a, b, and ¢ are any expressions in
SL, the relational expression:

a<b<c

and all similar forms have the same meaning in SL
as they do in mathematics. Any number of relational
operators can be combined in a relational expression,
and different operators can be used in the same ex-
pression.

Infix and prefix operators cannot be used in IL,
and must be replaced by corresponding operational
forms. For example:

A*B + 3 — ALPHA 12
is written in IL as:

(PLUS (TIMES A B) 3 (MINUS (EXPT
ALPHA 2)))

A similar notation is used for relational expressions.
Conditional expressions in SL have the form:

IF p, THEN e, ELSE IF p, THEN e, ELSE
... IF p, THEN e, ELSE e,.;

The final ELSE clause need not be included (unlike
ALGOL). The corresponding form in IL is:

(IFp,e.pse... -Pn €n €n+1)

The p;, which are Boolean expressions, are evaluated
in turn from left to right until a true one is found.
The value of the corresponding e; is then used as the
value of the entire expression. Conditional expres-
sions have the useful property that evaluation pro-
ceeds only as far as necessary to determine the out-
come.

A block expression is a block (see below) that
appears in a context where an expression is required.
A block expression is used to write a program as a
sequence of statements to be executed and ultimately
to produce a value. The value of a block is ordinarily

specified by a RETURN statement (see below).
LISP 2 differs from ALGOL in permitting a block to
be an expression as well as a statement.

A CASE expression is written in the form:

CASE(s, e, €, ..., €n)
in SL, and in the IL form:
(CASEse e, ... e,

where s is an integer-valued expression known as the
selector. If the value of the selector s lies in the range
1 <'s < n, then the expression e; is evaluated and is
the value of the CASE expression. If s < 1 ors >
n, the value is e,.

An assignment expression is written in the form:
Vee

in SL and in the form:
(SET ve)

in IL.

If v is a variable and e is an expression, the as-
signment expression has the effect of evaluating the
expression e and assigning its value to v. The value
of the entire expression is the value of e. Assignment
expressions, like all other expressions, can be used
as arguments in operational forms; in particular, they
can be nested to achieve simultaneous assignment of
value to several variables.

The general form of the left side of an assignment
expression is a locative expression. A locative ex-
pression designates a part of a data structure or
variable structure. A variable is a particular case of
a locative expression. Locative expressions can be
used to designate the current binding of a variable,
an element of an array, part of a list structure, or
particular bits of a word of memory. Thus, the two
assignments:

A « '(MARY DOE) ;
CAR A « "JOHN ;

will cause the value of A to become:

(JOHN DOE)

Blocks and Statements

A block may be either a block expression, a block
statement, or a compound statement. All three of
these are written in the same form and are evaluated
in the same way. Whether a block is a block expres-
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sion, a block statement, or a compound statement
depends on both the context of the block and what is
contained within the block.

In SL, a block is written in the form:

BEGIN d;; d.; ... di;s:58s; ... s, END

where the d; are block declarations and the s; are
statements. Each block declaration specifies one or
more internal parameters, which are variables that
are bound while the block is active. The correspond-
ing form in IL is:

(BLOCK(d; ds ... di) 518> ... 8n)

A statement is an action to be taken. Any expres-
sion (other than a variable) can be used as a state-
ment, but not every statement can be used as an ex-
pression. When an expression appears in a context
where a statement is expected, the expression is eval-
uated, but the value is discarded. A statement may
have one or more labels associated with it; these are
referred to in GO statements (see below) and in-
dicate where to transfer control. Variables can not
be statements because of the conflict with labels.

When evaluation of a block begins, bindings are
simultaneously created for each internal parameter
specified by a block declaration. These bindings re-
main in existence until the evaluation of the block is
completed, at which time they disappear. Each bind-
ing contains a value for the variable that it binds.
The nature of the binding is specified by the block
declaration that creates it. After the bindings have
been made, execution of the statements in the block
begins, The statements are executed in turn unless
the sequence of control is altered by a GO statement
or by a RETURN statement. Execution of the block
is terminated either by executing a RETURN state-
ment or by executing the last statement of the block
without a transfer of control.

A block declaration in SL is in the form:

P1i P2 Ps Sy, 825 - .-y Sn

The p; consist of a type, a storage mode, and a trans-
mission mode (in any order). Lexical storage and
transmission by value are specified by omission; if
the type is omitted, a default type is used. If all p;
are empty, the symbol DECLARE must be used.
Each of the s; is either the name of a variable or in
the form:
Vee

where e is an expression giving an initial value for
the variable v. If no initial value is given, a default

value, depending on the type, is used. A block decla-
ration causes all the specified variables to be internal
parameters of the block and to have the properties
specified by the p;.

In IL, each declaration specifies the properties of
one and only one variable; thus, in the translation
from SL to IL, it is necessary to break up each dec-
laration that declares more than one variable into a
sequence of declarations (with appropriate factoring
of properties). An IL declaration is in the form:

(V P1 P2 Ps Ps)

where one of the properties is the initial value, if any.
The various types of statements and their effects
may be summarized as follows:

1. GO statement—transfers control to the named
statement.

2. RETURN statement—terminates evaluation of
a block and determines the value of a block expres-
sion.

3. Compound statement—permits the insertion of
a sequence of statements in a context where only a
single statement is expected. A compound statement
is in the form of a block with no declarations.

4. Conditional statement—selects one of several
possible statements to be executed on the basis of
the truth or falsity of a sequence of Boolean expres-
sions.

5. Simple expression—causes the evaluation of
the expression; the value is discarded.

6. FOR statement—causes an iteration to be per-
formed for a sequence of values of a named variable.

7. TRY statement—causes control to be returned
to itself if an exit condition is detected during the
execution of a statement within the TRY statement.

8. Block statement—like a compound statement,
except that internal parameters may be declared in
the same manner as in a block expression.

9. CASE statement—selects one of several pos-
sible statements to be executed on the basis of the
value of an integer-valued expression.

10. Empty statement—can be used to place a
Iabel; contains nothing and makes no action.

The FOR statement has some unusual features
that merit further discussion. The statement:
FOR vINxDO s

causes the statement s to be executed for each ele-
ment of the list x, with v assuming the successive
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elements as its value in each execution of s. If ON
is used instead of IN, v first assumes as values the
entire list x, then its successive terminal segments
CDR x, CDDR x, etc., until the list x is exhausted.
The clause:

UNLESS b

may be inserted as part of a FOR statement to in-
hibit execution of the statement s whenever the
Boolean expression b is TRUE. The UNTIL clause
of ALGOL, used in conjunction with STEP, is re-
placed by a relational operator and an expression;
iteration continues until the variable of iteration no
longer satisfies the specified relation. This approach
avoids the need to recompute the sign of the incre-
ment for each iteration.

Functions

A function definition is a specification of a com-
putational procedure; the procedure itself is a func-
tion. A function definition in SL is in the form:

t FUNCTION n (X, X2, ..., %0)3dy, ... dij €

where t is the type of the value of the function, n is
the name of the function, the x; are dummy variables
that stand for its arguments, the d; are declarations
governing the arguments, and e is an expression
whose value is the value of the function.

The corresponding form in IL is:

(FUNCTION (nt) (d,d; ... d) e)

where a declaration is given for each argument. Thus
the declarations not only give the properties of the
arguments but also name them. If the value type of
the function is omitted, then the name n can be writ-
ten without parentheses and the default type will be
used.

The argument parameters are used to denote the
values of the actual arguments within the body of the
function definition. The body of the function defini-
tion e is the expression that defines the value of the
function. The argument declarations specify the type,
transmission mode, and storage mode of the argu-
ments.

Functional Data. A function may be used in either of
two ways: as an operator or as a datum. We have
already seen how functions can be used as form
operators. An example of the use of a function as a
datum would be the input to a numerical integration

routine; the input is the function to be integrated,
and the output is the integrand. An example oriented
more closely to symbolic data processing would be
the use of the LISP function MAPCAR, whose argu-
ments are a list to be transformed and a transforma-
tion function. The output of MAPCAR is the trans-
formed list. Thus

MAPCAR (’(2 5 4 9), FUNCTION ADDER
(J); INTEGER J; J+2)
would evaluate to the list:
(47611)

Since a function is itself a datum, it can be used
in any context where a datum is expected. Thus,
functions can themselves be used as arguments of
other functions, and functions can be values of vari-
ables. A function can be designated by its definition,
by its name, or by a variable having the function as
its value.

There are two contexts in which a function may be
referenced—as a datum, as we have just said, and
as a form operator. When a function is used as a
form operator, it must be designated either by a
functional variable (i.e., a variable whose values are
functions) or by a function name. The effect of using
a function definition as a form operator can be
achieved by assigning the function definition to a
functional variable (which is legitimate, since the
function definition then appears in a data context)
and then by using the functional variable as the form
operator.

Functions of an Indefinite Number of Arguments. It
is possible to define functions that expect an indefi-
nite number of arguments. In defining such a func-
tion, there is no way to enumerate the names of the
arguments; therefore an argument vector, i.e., a one-
dimensional array having a single variable name v,
designates the set of arguments. The length of the
vector is specified by a second variable k. In the
argument list, the argument vector (which must be
the first argument) is designated by writing v(k) in
SL and (v INDEF k) in IL. When the function is
entered, the value of v is the vector of arguments,
and the value of k is the length of this vector. The
different elements of the argument vector can then
be referred to within the body of the definition by
subscripted occurrences of v.

For example, the function SUMSQUARE might
be written to take the sum of the squares of its argu-
ments. We would then define it in SL as follows:
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REAL FUNCTION SUMSQUARE(X(I));
BEGIN INTEGER J; REAL Y;
FOR J<1 STEP 1 UNTIL > 1 DO
YeY + X()12;
RETURN Y
END

Here X is the argument-vector parameter and I is
its length. The corresponding IL definition is:

(FUNCTION (SUMSQUARE REAL) ((X
INDEF I))
(BLOCK ((J INTEGER) (Y REAL))
(FORJ (STEP11GR 1)
(SET Y(PLUS Y (EXPT (X 1)2))))
(RETURN Y)))

An actual use of SUMSQUARE might look like:

SUMSQUARE (2, 7, 4)
in SL, and:

(SUMSQUARE 2 7 4)
in IL.

Sections

A section is a collection of declarations and defini-
tions that operate as a unit. Dividing a large program
into sections makes it possible to write different parts
of the program independently without name conflicts.
It also makes it possible for one user to refer to pro-
grams written by another user without name con-
flicts. A section is designated by its section name,
which is an identifier. Each section is associated with
a set of variables that designate the various entities
defined within the section. At any given time there is
a single active section, which is known as the current
section; all other sections are external sections. A
variable in a particular section, whether current or
not, can be referred to by tailing (often called “quali-
fying”) e.g., “JOE$SAM?” refers to the variable JOE
in section SAM.

The section mechanism permits parts of LISP 2
programs to be written and checked out independ-
ently. At merge time, attention need be paid only to
variables used for names of common functions and
communication variables. Since the system programs
are in a special section, the user need not worry
about name conflicts; at the same time, the system
programs are accessible to the user through the tail-
ing mechanism. Thus the user can, if he chooses,
treat the system programs as an extension of his own
program rather than as a black box.

Supervisor Level Operations

LISP 2 is controlled by a supervisor program that
is itself named LISP and that can be called as a
function. When the user starts up the LISP system,
the supervisor is called immediately. The supervisor
accepts commands to perform various operations.
The actions taken by the supervisor in response to
these commands are known as top-level operations.
The following top-level operations are possible:

1. Evaluate an expression

2. Establish a current section with given
name and defauit type

3. Create a fluid or own variable of speci-
fied type and transmission mode

4. Define a function

5. Define a dummy function (used to
establish type information in certain
cases)

6. Define a macro

7. Define an instruction sequence to be
used in compilation

8. Define an assembly-language program

9. Declare a variable to be synonymous
with another variable.

The user can specify the input and output devices
to be used; the on-line typewriter is taken as the de-
fault case. After each operation the system sends
any necessary output to the output device and pro-
ceeds to the next operation.

Input/Output. One of the primary design aims in
LISP 2 I/0 has been the maintenance of as much
machine independence as possible. This is accom-
plished by distinguishing user interfaces from system
interfaces and insulating the user from the system
interfaces. This effect is achieved by creating ma-
chine-independent data aggregates called “files,” and
permitting the user to operate with files by means of
LISP 2 functions.

To the user, a file is a source or sink for informa-
tion, which is filled on output and emptied on input.
A file itself is both device- and direction-independ-
ent. The relationship of a file to an external device
is determined by the user at run time, when he
specifies whether the file is to be an input file, an
output file, or both.

To the system, a file consists of a sequence of
records, represented internally as an array of type
OCTAL if the file is binary, and as a string if the file
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is composed of characters. (ASCII 8-bit characters
are used internally throughout LISP 2.) To reduce
buffer storage overhead, only one record for a given
file can be in main memory at a time. String records
are further structured into lines. The number of char-
acters per line and lines per record may be specified
by the user, but must be consistent with the conven-
tions used by the external monitor system.

When a record in a file is moved from an external
device into core, it is transformed into a LISP 2
string. The transformation may involve character
code conversions and insertion or deletion of control
characters. The transformation is governed by a col-
lection of control words associated with the file.
During output, this transformation, known as “string
post-processing,” is reversed.

File Activation and Deactivation. A file may be ei-
ther active or inactive; an active file, in turn, may be
either selected or deselected. No record is kept within
LISP 2 of inactive files; however, many files may be
active concurrently.

A file is activated by evaluating the function
OPEN which establishes all necessary communica-
tion linkages between LISP 2 and the monitor. The
file is named by an identifier that is its referent
throughout its active life. The user further specifies
the desired file description at this time. This descrip-
tion is given only once and consists of a list of file
properties desired by the user, such as the unit (tape,
disc, teletype, CRT, etc.), form (binary, ASCII,
BCD, etc.), format (line and record sizes), and vari-
ous protection and identification parameters.

Deactivation of a file is achieved by evaluating the
function SHUT. SHUT breaks all the communication
linkages and deletes all internal structures such as
arrays, strings, and variables that were dynamically
established by OPEN. The user may specify the dis-
position of the file, e.g., the saving of the tape or the
insertion of the file in disc inventory. The external
monitor is informed of such actions by LISP 2.

File Selection. At any given time, exactly one file is
selected for input and one for output; all other active
files are deselected. The LISP 2 reading functions all
operate on the currently selected input file; the print-
ing functions all operate on the currently selected
output file. The functions INPUT and OUTPUT are
used for selecting the input file and the output file,
respectively.

When a new file is selected, the record, line, and
column controls for the deselected (replaced) file are
preserved, and the new file record, line, and column

controls are reestablished. Once a file is selected, all
I/0 primitives act only on that file. Thus it is pos-
sible to write a LISP 2 program that is independent
of form, format, and device by supplying the name of
the file as an argument of the program at run time.
This scheme allows a LISP program to be debugged
with files generated on-line and subsequently run
with bulk data from tape or disc files simply by
changing the selected file.

Other 1/0 Functions. A variety of 1/0 functions are
available for reading and writing binary and symbolic
data. There are character-level primitives that permit
testing, printing, reading, and transforming char-
acters. Other functions allow reading and printing at
the token and S-expression levels. Character map-
pings permit LISP 2 to communicate with restricted
character-set devices.

Examples

An example is now given of a complete SL pro-
gram. The example includes not only the program
itself but also the control actions necessary to test it:

SYMBOL SECTION EXAMPLES, LISP;
% LCS FINDS THE LONGEST COMMON SEG-
% MENT OF TWO LISTS L1 AND L2
FUNCTION LCS(L1,L.2); SYMBOL L1, L2;
BEGIN SYMBOL X, Y, BEST « NIL; INTE-
GER K«O, N, LX<LENGTH(L1);
FOR X ON L1 WHILE LX > K DO
BEGIN INTEGER LY « LENGTH (L2);
FOR Y ON L2 WHILE LY > K DO
BEGIN N « COMSEGL (X,Y);
IF N < =K THEN GO A;
K « N;
BEST « COMSEG (X,Y);
ALY « LY —1
END;
LX< LX —1
END;
RETURN BEST;
END;
% COMSEGL FINDS THE LENGTH OF THE
% LONGEST INITIAL COMMON SEGMENT
% OF :
% TWO LISTS X AND Y.
INTEGER FUNCTION COMSEGL (X,Y);
IF NULL X OR NULL Y OR CAR X /=
CAR Y
THEN O ELSE COMSEGL (CDR X, CDR
Y)+1;



% COMSEG FINDS THE LONGEST INITIAL
% COMMON SEGMENT OF TWO LISTS X

% AND Y

SYMBOL FUNCTION COMSEG (X, Y);
IF NULL X OR NULL Y OR CAR X /=
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CAR Y

THEN NIL ELSE CAR X . COMSEG(CDR

X, CDR Y);
% LENGTH COMPUTES THE LENGTH OF L

INTEGER FUNCTION LENGTH (L); SYM-
BOL L;
BEGIN INTEGER K « O; SYMBOL L1;

FORLIINLDOK « K+1;
RETURN K;

END;

LCSC(ABCBCDE),(BCDABCDEF));

STOP

machine: (B C D E)

This example illustrates the use of list processing
capabilities combined with integer arithmetic and
iteration. The operator “<="" means “less than or
equal to,” and the operator “/=""means “not equal
to.” The LISP operators CAR, CDR, and NULL are
all used as prefix operators without parentheses. The
dot in the third line of COMSEG is an infix operator
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that stands for the LISP function CONS. The state-
ment “FOR X ON L1” causes iteration to take

place on the successive terminal segments of L1.
Thus, if L1 is the list (A B C D), then iteration takes
place successively on (A B C D), (B C D), (C D),
and (D). The function LENGTH, defined here, is

as an illustration.

System Overview
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relationship among its different components is
shown in Fig. 2. Information enters the system via

the I/0O package in either SL or IL. The I/0 pack-

age transforms the input into a stream of characters
—the input to the finite state machine—which in
turn generates a stream of tokens. Among other

things, the finite state machine performs the task of
linking up a newly received identifier with a previous
copy of the same identifier. The token stream pro-
duced by the finite state machine is routed by the
supervisor to either the syntax translator or to a
reading program for IL, depending on whether SL
or IL is expected. In either case, the result is an ex-
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Figure 2. System components and information flow paths (unlabeled connections designate control paths).
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pression in IL. The supervisor determines when
compilation is to take place, and also handles proc-
essing requests.

The syntax translator takes a stream of SL tokens
and transforms it into an IL expression. This expres-
sion can be returned as output, passed to the com-
piler, or both. The choice is made by the supervisor
under the control of the user. The syntax translator
consists of parsing and generating programs that are
compiled from a set of syntax equations. These syn-
tax equations define SL in terms of IL.

The compiler, which is the most complex compo-
nent of the system, converts IL into input for LAP,
the LISP Assembly Program, or for the core image
generator. Both LAP and the core image generator
accept input in assembly language (AL). If LAP is
being used, then the result of assembly is a relocat-
able segment of code stored in an area of the ma-
chine reserved for binary program. If the core image
generator is being used, then the result is a string of
pairs of binary numbers, each consisting of a core
location and the contents of that location, stored on a
magnetic tape or other external medium. The core
image generator is only used when a new system is
being created.

The META compiler, the garbage collector, and
the primitives are all implicitly involved in the opera-
tion of the system. The META compiler is a library
program that generates a syntax translator from a
set of syntax equations. The garbage collector is the
program that collects dead storage when available
storage has been exhausted. The primitives are the
basic library functions in terms of which the entire
system is written.

Memory Management

Most of the concepts of memory management
used in LISP 1.5 are also used in LISP 2. Memory
management in LISP 2 is based on several consid-
erations:

1. LISP 2 data structures may vary in
size by orders of magnitude at run
time, and storage for such data struc-
tures must be allocated automatically.

2. Since recursion is permitted, successive
generations of data structures must be
retained simultaneously.

3. Programs and data structures that are
no longer needed must be purged with-
out explicit action on the part of the
user.

4. Numerical data must be stored in such
a way as to permit efficient numerical
calculations.

LISP 2 data structures may be either variable or
fixed in size. The variable data structures are arrays,
strings, and symbolic expressions. Although an array,
once established, does not change in size, the size of
an array is frequently not known until the occasion
arises to create it. In the case of list structures, the
situation is even more complex; a list structure may
be modified in such a way as to increase or decrease
its size.

Arguments of functions and internal parameters of
blocks are stored on a pushdown stack. Since all
temporary storage belonging to LISP 2 functions is
recorded on the pushdown stack, which is main-
tained by the LISP 2 system, recursion is permitted
with no special user provisions. Unlike LISP 1.5,
LISP 2 stores numbers directly on the pushdown
stack as single cells. Therefore, it is possible to per-
form arithmetic without the loss of efficiency that
would arise from packing and unpacking numbers
referenced indirectly. Symbolic expressions, strings,
and arrays, however, are accessed by means of
pointers stored in the stack. The data structures thus
pointed to are discarded when the function creating
them has completed its execution; however, they do
not disappear, but remain as garbage until the next
garbage collection, the description of which follows.

In LISP 2, data structures are grouped according
to their storage characteristics and a storage area is
set aside for each group. The groups are:

1. Elementary symbolic entities (symbolic
constants, function and variable names,
etc.)

2. Compiled programs

3. List structures

4. Arrays and strings

In addition, a storage area is set aside for the
pushdown stack. These storage areas are arranged in
pairs, where one member of the pair grows from the
bottom up and the other grows from the top down.
Data storage is obtained by taking storage space from
the appropriate area until that area is exhausted
(which occurs when its boundary meets the boundary
of the area that is paired with it). At this point, the
garbage collector is invoked. Garbage collection
erases all inaccessible data structures and reclaims
the emptied space for new structures. For instance,
if a LISP 2 function has been redefined, the program
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corresponding to its old definition is inaccessible and
thus is erased. During garbage collection, the differ-
ent areas are compacted, relocating code and/or data
structures, if necessary, so as to eliminate the gaps
left by erased structures.

The different kinds of structures are stored in
different areas because their requirements in terms
of garbage collection are different. For instance, the
elementary symbolic entities cannot be moved, but
other kinds of data can be moved. Similarly, list
structures consist of independent nodes, while arrays
consist of blocks of different sizes.

The Syntax Translator and
the META Compiler

The translation from SL to IL is performed by a
syntax translator that was generated by the META
compiler. The META compiler is based upon a pro-
gram developed by Special Interest Group for Pro-
gramming Languages of the Los Angeles Chapter of
ACM.® The META compiler takes as input a speci-
fication of the syntax of SL, together with instruc-
tions on how each syntactic entity is to be trans-
formed to IL. It produces an IL program that
actually carries out the translation from SL to IL.
The description of the syntax of SL is given in an
extended version of Backus-Naur Form.*

The META compiler produces top-to-bottom
compilers with a controlled backup feature and an
interface with the finite state machine (see below).
Both the controlled backup and the finite state ma-
chine are efficiency features. The controlled backup
allows the designer of a language to specify in the
syntax equations when the state of the machine must
be saved because two or more parsings start with the
same construction.

As it is possible to regenerate the syntax translator
with new syntax equations at any time, the syntax
and semantics of SL are not, in principle, rigidly
fixed. In practice, variants on the syntax translator
will be used in order to translate other languages into
LISP 2 IL. These other languages, unlike SL, will
normally not be semantically equivalent to IL.

Finite State Machine

The finite state machine (FSM) is a token-parsing
program used by the syntax translator and the S-
expression reader. Reading LISP 2 entities is ex-
pensive, not only in the original creation of the
internal structures, but also in the time spent in

garbage collecting when the structures are discarded.
Consequently, it is desirable to avoid backup at the
character level and its resulting re-creation of dupli-
cate structures. Since backup must be used by the
syntax translator, the FSM was imposed between it
and the character stream to eliminate reprocessing of
tokens. Having the bottom-to-top FSM interface with
the top-to-bottom syntax translator eliminates a large
portion of the overhead associated with reading in
the LISP 2 system. The S-expression reader does not
require backup, but since the FSM existed, it was
convenient to use tokens for building S-expressions
also.

The FSM behaves like a Turing machine. It moves
from state to state as it reads characters; when a
terminal state is reached, it “prints” a character from
its output alphabet (tokens) and sets its state to the
initial one. Parsing and manufacture of structures are
done simultaneously as characters are recognized.
No reprocessing of the parsed characters is ever nec-
essary, since in a terminal state the token is already
complete (except for a final action, such as combin-
ing the parts of a real number).

The LISP 2 Compiler

The LISP 2 compiler is a large, one-pass, optimiz-
ing translator whose input is a function definition in
IL and whose output is an assembly-language list of
instructions suitable for input to LAP. Most of the
compiler is independent of the target machine, since
the compilation concepts themselves are machine-
independent. The declarations of all fluid variables
appearing within the function are written into the
output listing, since these must agree with fluid vari-
able declarations made elsewhere. Checks are made
for both format and semantic errors during compila-
tion. The compiler consists of three major sections:
the analyzer, the optimizer, and the user control
functions.

Analyzer. The top-level control of the compiler re-
sides in the analyzer, which operates recursively.
Each item to be compiled is passed to the analyzer
either directly or indirectly. If the item is a variable,
an appropriate declaration is found and code for
retrieving the variable is generated; otherwise the
code for a function call is generated, a macro expan-
sion is performed and the result compiled, or linkage
to an appropriate code generator is made. A pattern-
matching function has been implemented for use in
the LISP 2 compiler. The patterns are written in a
modified form of Backus-Naur Form (not the same
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as the one used in the syntax translator). The pat-
terns are matched to an S-expression and the value of
the match is either TRUE or FALSE. The pattern-
matching function checks for syntactic correctness
and distinguishes among different forms at the same
time.

Optimizer. Optimization of the code produced by the
LISP 2 compiler is handled by many groups of
routines, each responsible for certain actions. The
communicative mechanisms between these various
parts and the rest of the compiler will be described in
some detail below.

The movers, a highly machine-dependent set of
functions, produce code that alters the state of a
compilation in a specified way, such as moving an
object to an accumulator or converting a datum to a
specific type. Embodied in the movers is a predicate
capability that answers the question, “Is this move
possible under these conditions (say, one machine
instruction)?”” The movers are used to build all ad-
dress and modifier fields of generated instructions.
Associated with the movers is a post-processor that
rewrites the output code after the main compiler has
produced it. Redundant load-store sequences and
some unnecessary branches are removed from the
listing. Also, certain groups of instructions are re-
written to make use of machine-specific instructions.

The arithmetic optimization package handles code
generation for addition and multiplication. The algo-
rithm that is used is a standard one, namely, first
sorting the arguments by type and then by priority
sequence within a particular type. The sequence de-
pends on whether the arguments are memory or ac-
cumulator references. A single set of functions
handles both multiplication and addition, with the
aid of several functional arguments.

A second kind of optimization has to do with the
elimination of unnecessary transfer instructions. This
task is accomplished through the analysis of conflu-
ence points, i.e., places in the program at which
several paths of control converge. For instance, con-
sider the conditional expression:

(AF pre:pz€ ... Pn€n)

The appearance of this conditional expression
establishes a confluence point at the end of the com-
piled code that represents it. After the execution of
any of the e;, control goes to this confluence point.
Moreover, the confluence point is hereditary for each
of the ey, i.e., if one of the e; is a conditional expres-
sion, then its confluence point is the same as that of

the entire expression. Analogous considerations hold
for conditional statements. Confluence points are also
hereditary with respect to RETURN statements of
blocks, i.e., the confluence point of a RETURN
statement is the same as that of the block in which it
appears.

When an expression is compiled, the character-
istics of the value that is produced must be specified.
These characteristics include type, whether it is in a
special register or in an ordinary memory cell, its
address modifier (direct or indirect), which registers
it may be left in, whether the actual value is needed
or whether the negative or reciprocal of the value is
so described, etc. These characteristics are remem-
bered by a set of state variables, which are bound
for each call to the analyzer. As a statement or ex-
pression is compiled, a listing is generated and the
state variables set to reflect the state of the compila-
tion. The compiler is passive in the sense that a com-
pilation produces only the minimum amount of code
necessary to allow the result to be described by the
state variables.

User Control Facilities. The user can give the com-
piler explicit instructions to aid in the compilation
process. As in LISP 1.5, macros are an integral part
of the language. Many of the facilities of the lan-
guage, e.g.,, FOR statements, are implemented by
means of system macros. When a FOR statement (in
IL form) is encountered during compilation, it ap-
pears as an operational form whose operator is FOR.
The compiler tests each form operator to see if a
macro is defined for it. In the case of FOR, there is
such a macro. The macro is invoked with the FOR
statement (in the form of an S-expression) as input.
The output is a block containing an equivalent itera-
tive loop. This block is then compiled in place of the
FOR statement. Macros may also be defined by the
user, and no distinction is made between system
macros and user macros.

Certain machine-dependent operators are partic-
ularly useful as primitives in compilation. CORE is
an operator that acts like an array whose content is
all of the machine memory. Therefore CORE(x) is
the content of location x. BIT is an operator that
specifies a certain contiguous portion of a word.
There are also several operators that permit an ex-
pression to be forced to a certain type or permit a
datum of one type to be used as though it were of
another type. Although such mechanisms exist in
most compilers, LISP 2 has made these items avail-
able through the language.
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The LISP 2 Assembly Program

The LISP 2 Assembly Program, LAP, is a pro-
gram that generates a code segment from a list of
symbolic instructions and labels. LAP also allocates
storage for variables on the pushdown stack, and
insures that references to fluid and own variables are
consistent among different compiled functions. LAP
does more than most assemblers, in that it handles all
aspects of pushdown stack mechanics; consequently,
references to variables are made by naming the vari-
able in the appropriate field of any instruction that
references it. Thus, the pushdown stack need never
be referenced explicitly.

LAP includes a number of system macros specifi-
cally designed for LISP 2 programming. The pro-
logue and epilogue of a function are generated by
BEGIN and RETURN respectively; CALL is used
to generate a call to a LISP 2 function in the stand-
ard format. Storage allocation on the pushdown stack
is performed by the BLOCK, DECLARE, and END
macros; FLBIND creates any necessary bindings for
fluid variables. LAP does not have a generalized
macro facility; any effect that could be achieved by
such a facility, however, can also be achieved by
preprocessing.

The address field of an instruction may be used to
allocate, refer to, or release temporary storage on the
pushdown stack. The address fields TOP. and POP.
are normally used with instructions of the “load”
type. Both TOP. and POP. refer to the most recently
allocated pushdown cell, but POP. has the additional
effect of releasing that cell. PUSHA. and PUSHP.
both cause a new pushdown cell to be allocated, and
refer to that cell; PUSHA. and PUSHP. are normally
used in instructions of the “store” type. PUSHA. is
used for absolute quantities and PUSHP. for sym-
bolic quantities, so that a map of the pushdown stack
can be maintained.

To illustrate the use of assembly language, as well
as the output code produced by the compiler, we give
the Q32 assembly language version of the program
RANDOM presented as an example earlier in the

paper:

(LAP (FUNCTION (RANDOM REAL)
((A REAL) (B REAL))
(STF TOP.)
(BEGIN)
(LDA Y)
(MUL 3125 (L567.7 R S))
(STB Y)

(ARGS)
(LDA YY)
(STF PUSHA.)
(LDA (NUMBER 67108864) S)
(CALL (REMAINDER . LISP))
(STF Y)
(LDC A)
(FAD B)
(STF PUSHA.)
(LDA Y)
(FLT (ENTRY B48.))
(FDV (NUMBER 6.7108864000E~7))
(FMP POP.) (FAD A) GO9017 (END) (RE-
TURN))
((REMAINDER . LISP) FUNCTION (FUNC-
TIONAL INTEGER INTEGER INTEGER)
NIL) (Y OWN INTEGER NIL)) USER)
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