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Define P (x) to be the probability that gold will be discovered if effort x is
committed to excavating a site. Then P (0) = 0, P is monotonic nondecreas-
ing, and P∞ = limx→∞ P (x) ≤ 1 is the probability that the site contains
gold.

Define P (∆x|x) to be the probability that committing ∆x additional
effort will find gold at the site given that effort x did not. Then,

P (∆x|x) =
P (x+ ∆x)− P (x)

Q(x)
,

where Q(x) = 1− P (x). Similarly, define

Q(∆x|x) = 1− P (∆x|x)

= Q(x+ ∆x)/Q(x)

as the probability that gold will not be found at the site by committing ∆x
additional effort given that it wasn’t found with effort x.

Assume that effort x is spent at the site and that no gold is found. Further
assume that we are willing to spend up to ∆x = nr in additional resources. If
gold is found during the excavation, less will be spent because digging stops
as soon as treasure is discovered. What is the expected cost of the decision
to commit these resources?

This question is straightforward to answer if the process is considered in
n discrete steps. Clearly, r is spent for the first step. The second costs the
same if it is necessary, i.e., if the first step does not discover gold. Therefore,
the contribution of the second step to the total expected cost is Q(r|x)r.
Similarly, the contribution of the k’th step is Q ((k − 1)r|x) r. Thus,

C(nr|x) ≈
n∑
k=1

Q ((k − 1)r|x) r,
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where C(y|x) is the expected cost when the expenditure of up to y additional
resources is committed given that the expenditure of x has not found a trea-
sure. This formula is exact when the summation is replaced by integration,
in the limit, as r gets small and nr remains constant, i.e.,

C(nr|x) =
∫ nr

0
Q(z|x) dz

=
∫ nr

0
Q(x+ z) dz

/
Q(x)

and, recalling that ∆x = nr,

C(∆x|x) = I(∆x|x)/Q(x),

where I(∆x|x) =
∫∆x

0 Q(x + z) dz. Let C∞ be the expected cost to dig
at a site until a treasure is found. Then, C∞ = C(∞|0) =

∫∞
0 Q(x) since

Q(0) = 1. Note, C∞ <∞ implies that P∞ = 1 but the converse may not be
true.

Let φ(∆x|x) to be the benefit/cost ratio for committing to effort ∆x given
that effort x is not productive, i.e.,

φ(∆x|x) = P (∆x|x)/C(∆x|x)

=
P (x+ ∆x)− P (x)

I(∆x|x)
. (1)

The instantaneous benefit/cost ratio, φ(x), is defined as

φ(x) = lim
ε→0

φ(ε|x)

= lim
ε→0

P (x+ ε)− P (x)∫ ε
0 Q(x+ z) dz

= P ′(x)/Q(x),

where the last derivation uses L’Hôspital’s rule. Since P ′ = −Q′, it follows
that φ(x) = −d logQ(x)/dx and, therefore, that

∫
φ = − logQ. Thus, for

an arbitrary nonnegative function φ with the domain <+, a corresponding Q
and P can be calculated by

Q(x) = exp
(
−
∫ x

0
φ(z) dz

)
P (x) = 1− exp

(
−
∫ x

0
φ(z) dz

)
.
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Since dI(∆x|x)/dx = −(P (x+ ∆x)− P (x)), a similar line of reasoning and
formula 1 show that, for an arbitrary nonnegative φ(∆x|x),

I(∆x|x) = exp
(
−
∫ x

0
φ(∆x|z) dz

)
.

In the case of discrete mining, maximal indivisible blocs are identified by
the condition that φ of a sequence decreases if the sequence is extended in
any way. Here, an equivalent necessary (but not sufficient) condition is that
dφ(∆x|x)/d∆x vanish. This derivative is calculated by

dφ(∆x|x)

d∆x
=

P ′(x+ ∆x)I(∆x|x)−Q(x+ ∆x) (P (x+ ∆x)− P (x))

I(∆x|x)2
.

Therefore, the condition that it vanish expands to

dφ(∆x|x)

d∆x
= 0

P ′(x+ ∆x)I(∆x|x) = Q(x+ ∆x) (P (x+ ∆x)− P (x))

P ′(x+ ∆x)

Q(x+ ∆x)
=

P (x+ ∆x)− P (x)

I(∆x|x)

φ(x+ ∆x) = φ(∆x|x). (2)

It is easy to see, by analogy to the discrete case, that the instantaneous value
of φ must decrease near the end of a maximal bloc; otherwise extending the
bloc increases its φ. Thus, another necessary condition that a maximal bloc
must satisfy is that, at its end boundary, e

dφ(e)

de
≤ 0

P ′′(e)Q(e)−Q′(e)P ′(e)
Q(e)2

≤ 0

−Q′(e)P ′(e)/Q(e)2 ≤ −P ′′(e)/Q(e)

P ′(e)P ′(e)/Q(e)2 ≤ −P ′′(e)/Q(e)

φ(e)2 ≤ −P ′′(e)/Q(e)

Therefore, just those e that satisfy this condition can end maximal blocs.
Continuity constraints may make it straightforward to find regions of <+

where it holds.
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Figure 1: Interpretation of bloc end condition: tan(θ) = P ′(x+ ∆x).

Figure 1 permits a geometric interpretation of the first end of bloc condi-
tion. The curve is P (z) and the line a is the tangent at the point z = x+∆x.
Therefore, its slope is P ′(x+ ∆x) = `(b)/`(c). Since the construction makes
`(b) = 1−P (x+ ∆x) = Q(x+ ∆x), it follows that `(c) = Q(x+ ∆x)/P ′(x+
∆x) and, therefore, that `(c) = φ(x + ∆x)−1. This is independent of any
assumptions aboutx+ ∆x.

Now assume that x + ∆x ends a maximal bloc. Then formula 2 applies
and `(c) = φ(x + ∆x)−1 = φ(∆x|x)−1 = I(∆x|x)/(P (x + ∆x) − P (x)). By
the construction, `(d) = P (x + ∆x) − P (x) and, therefore, the area of the
rectangle bound by sides c and d is `(c)× `(d) = I(∆x|x).

The area bound by the vertical lines at x and x + ∆x, the horizontal
line at height 1, and the curve at the bottom is

∫∆x
0 Q(x + z) dz = I(∆x|x)

from the construction and the definition of I. Therefore, the first end of
bloc condition states that the area above the curve equals the area of the
rectangle.
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