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1 Summary

There are two rather different motivations to distribute a computation. The
first is to reduce the time to obtain answers by applying multiple comput-
ers in parallel. In recent times, for example, computer owners all over the
world have donated resources to the search for large prime numbers. The
use of thousands of computers has reduced the time between successes to
months rather than years. The second motivation for distribution is to use
computation to reduce the bandwidth necessary to transport data. In some
cases, multiple local sites contribute to a central site where a fused result is
produced. Summary statistics and reductions of large data collections are
typical calculations of this sort. The computations are not particularly tax-
ing so communications resources represent the major cost factor. Only the
second motivation is considered herein.

A conjecture about necessary and sufficient conditions that the compu-
tation of a function can be distributed to reduce bandwidth is stated below.
That conjecture concerns equivalence classes—partitions—of a function’s do-
main. The elements, x1 and x2, are in the same partition if f(x1, y) = f(x2, y)
for all y, where x1, x2, and y are tuples of data. The conjecture is formed
in terms of the “dimensionality” of a surface that intersects each member of
the partition.

The next section presents a simple example, the computation of the mean
and variance of a sample split between two sites, to motivate the formal def-
inition of distributable computation introduced in Section 3. The following
section makes a conjecture, that if true, would provide an alternative char-
acterization of distributable functions. Section 5 then casts the conjecture in
terms of partitions of the function’s domain and a set of representatives for
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elements of the partition. In addition, it is noted why proving the conjecture
might be difficult. Finally, Section 6 examines the class of monotonic func-
tions where the conjecture is true and, therefore, a straightforward method
to check whether a computation is distributable or not is available.

2 An Example

An example is used to motivate the definition of distributed computation
introduced below. The computation to be distributed is (A, V ), where A is
the average and V is the variance of the numbers s1, . . . , sn.

A =
n
∑

i=1

si/n V =
n
∑

i=1

(si −A)2/n.

These results can easily be computed from

α =
n
∑

i=1

si β =
n
∑

i=1

s2i

by the formulas A = α/n and V = β/n − A2. Assume that the numbers
s1, . . . , sk are resident at one site while sk+1, . . . , sn are resident at another.
One possibility is to transmit the k-tuple, (s1, . . . , sk), to the second site
where A and V will be computed. However, there is a more economical
possibility shown in Figure 1. Calculate αk and βk at the first site (CPU1)

(s1, . . . , sk)

✲ CPU1

❄

(αk, βk)
(sk+1, . . . , sn)

✲ CPU2
✲(A, V )

CPU11

αk =
k
∑

i=1

si βk =
k
∑

i=1

s2i

CPU22

α = αk +
n
∑

i=k+1

si β = βk +
n
∑

i=k+1

s2i

A = α/n V = β/n−A2

Figure 1: Distributed computation of average and variance of s1, . . . , sn.

and only transmit these two quantities to the second site (CPU2) where α and
β, then A and V are computed. In this example, the bandwidth is reduced
by a factor of 1− 2/k which can be considerable if k is large. Achieving this
sort of reduction is the motivation for the distributed computation model
described next.
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3 Model of Distributed Computation

The following definition, as depicted in Figure 2, is meant to capture the idea
of distributing a computation to reduce bandwidth as discussed above.

Definition 1 f :X×Y → T is Z-distributable in X if there is a continuous

onto d:X → Z and a continuous c:Z×Y → T , such that f(x, y) = c(d(x), y)
for all x ∈ X and y ∈ Y .

Figure 2: Computation f(x, y) is Z-distributable as c(d(x), y).

The definition entails that f be continuous because it is a composition of
continuous functions and that Z be connected when X is connected because d
is continuous. (Connectivity of X is assumed below.) Continuity of functions
is required for two reasons. The first is that computation of discontinuous
functions is rare and somewhat ill-defined because computation entails trun-
cation and, hence, approximations. The second is that communications of
data by a discontinuous function—say by a reduction operation from ℜn to
ℜ that interlaces decimal digits—is not germane to actual computations and
finite bandwidth resources.

The cases of interest are those where X ⊂ ℜn, Z ⊂ ℜu, and u < n. Of
course there is always a Z such that f is Z-distributable if u = n. A sharper
definition is suggested though it isn’t used below.

Definition 2 The function f :X × Y → T is exactly Z-distributable in X,

where Z ⊂ ℜu, if it is Z-distributable and there is no v < u and Z ′ ⊂ ℜv

such that it is Z ′-distributable.
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Consider the example from the previous section in terms of the first definition:
Let X = ℜk, Y = ℜn−k, T = ℜ × ℜ+, where ℜ+ is the nonnegative reals,
and Z = ℜ × ℜ+; then d(s1, . . . , sk) → (αk, βk) and c((αk, βk), sk+1, . . . , sn)
are the computations shown in Figure 1.

The median is an example of a function that is difficult to distribute to
advantage. It is defined as f(x1, . . . , x2n+1) = xjn+1

, where j1, . . . , j2n+1 is a
permutation of 1, . . . , 2n + 1, such that xji ≤ xji+1

. Consider the potential
distributed computation,

f(x1, . . . , x2n+1) = c(d(x1, . . . , xn+1), xn+2, . . . , x2n+1),

where d:ℜn+1 → ℜv. The questions is, how small can v be? The answer is
that v ≥ n+ 1 because the xn+2, . . . , x2n+1 can be chosen such that any one

of x1, . . . , xn+1 is the value of f . Since no continuous d can exactly encode
independent x1, . . . , xn+1 in less than n+1 real numbers, the answer follows.

Now assume that 2n + 1 numbers are split between two sites, 0 ≤ m ≤
2n+ 1 at one site and 2n+ 1−m at the other, and it is desired to compute
the median using the least possible communications. It can be shown, using
an argument similar to the above, that at least b = min(m, 2n + 1 − m)
numbers must be transmitted. The minimum is achieved by sending all b
of the numbers from the site with the smallest collection to the other site
where the median will be computed. If the median is to be calculated at the
smaller site, b+ 1 numbers must be transmitted.

4 A Conjecture

A conjecture about Z-distributable functions is formed in terms of a partition
induced on X by f . Assume f :X × Y → T as above, and define

Fx = {q ∈ X | ∀y ∈ Y : {f(q, y) = f(x, y)}}

F = {Fx | x ∈ X}.

Thus, F is a partition of X and the elements of an Fx ∈ F are indistinguish-
able from x vis-á-vis f .

Theorem 3 If f :X×Y → T , W ⊂ X, r:X → W is continuous onto, where

r(x) ∈ Fx, and p:W → Z is continuous 1-to-1, then f is Z-distributable.

Proof Let d(x) = p(r(x)) and c(z, y) = f(p−1(z), y). Then f(x, y)) =
c(d(x), y) because the conditions guarantee that p−1 is well defined. QED
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Conjecture 4 If f is Z-distributable, then there is a W ⊂ X, a continuous

onto r:X → W , where r(x) ∈ Fx, and a continuous 1-to-1 p:W → Z.

The conjecture if true, together with the theorem, would provide an alterna-
tive, equivalent definition of Z-distributable functions.

Figure 3: The conjecture is that Z-distribution by c(d(x), y) entails a homo-
morphism p of Z and W , and r:X → W where r(x) ∈ Fx.

It is straightforward to find W , r, and p that satisfy the conjecture for
the computation of the mean and variance as described in Sections 2 and 3.
Let s = (s1, . . . , sk) and t = (t1, . . . , tk). Then, using the formulas shown in
Figure 1, t ∈ Fs if and only if

∑

ti =
∑

si and
∑

t2i =
∑

s2i . Let

W = {(a− δ, a, . . . , a, a+ δ) | a ∈ ℜ ∧ δ ∈ ℜ+}

and define p:W → Z as p(w) = p(a − δ, a, . . . , a, a + δ) → (a, δ). Clearly, p
is continuous and 1-to-1 onto Z = ℜ × ℜ+ as required. It remains to find a
continuous r:X → W , onto, where r(x) ∈ Fx. Simply define r(x1, . . . , xk) →

(a− δ, a, . . . , a, a+ δ), where a = α/k, δ =
√

(kβ − α2)/(2k), α =
∑

xi, and

β =
∑

x2
i . The fact that r(x) ∈ Fx is easily verified by substitution.

5 Discussion

In the theorem and conjecture, W ⊂ X has a special significance—it provides
a set of representatives for a partition of X that refines F . Let

Wx = {q ∈ X | r(q) = r(x)}

W = {Wx | x ∈ X}

5



W clearly is a partition of X and it refines F because

∀x, q ∈ X : {Wx ⊂ Fq ∨Wx ∩ Fq = ∅}.

Essentially, p−1 maps Z into X such that its image, W , hits each element of
F at least once and r maps each x ∈ X to a point in W that is also in Fx.
The conjecture is that this is always possible if f is Z-distributable. In other
words, if f is Z-distributable, the conjecture postulates a contraction, r, of
X to a homomorphic image, W of Z, that preserves the partitioning induced
on X by f , i.e., r(x) ∈ Fx.

In some cases it is possible to construct the W , r, and p, required by the
conjecture from the d used to distribute f . If there is a 1-to-1 continuous
q:Z → X such that d(q(z)) = z, this is certainly the case: simply define
W = q(Z), p(w) = q−1(w), and r(x) = q(d(x)). Unfortunately, such a q
does not in general exist for a given d (see Figure 4) so this is not a fruitful

s
h(s)

f(x1, x2, y) = yh(x1) is ℜ-distribut-
able by f(x1, x2, y) = c(d(x1, x2), y)
where d(x1, x2) = h(x1) and c(z, y) =
zy. However, there is no 1-to-1 contin-
uous q such that d(q(z)) = z because
h does not have a continuous inverse
over its entire range. However, if f
is distributed by d(x1, x2) = x1 and
c(z, y) = yh(z), simply define q(z) =
(z, 0) and the conjecture is seen to hold
for this case.

Figure 4: A problem with straightforward verification of the conjecture

avenue to seek a general proof of the conjecture. However for some classes
of functions, it is easy to show that the required q can be constructed from
any d used to distribute the computation. An example is presented next.

6 Distributing Monotonic Functions

Let f :X × Y → ℜ be Z-distributable, where X = Sn, S ⊂ ℜ is an interval,
and Z ⊂ ℜ. If f(s1, . . . , sn, y) is strictly monotonic in each si, the q described
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in the previous section can be constructed as follows. Define W as the “main
diagonal” of the hypercube, X , i.e.,

W = {(s, . . . , s) | s ∈ S}.

Let dW be d restricted to W . It will be shown that (1) dW is 1-to-1 into
Z and (2) dW is onto Z. Hence, d−1

W exists and is our q and, therefore, the
conjecture will be established for this restricted class of monotonic functions.
Consider

c(d(s, . . . , s), y) = f(s, . . . , s, y).

Since the right hand side is strictly monotonic in s, dW must be strictly
monotonic in s too and, hence, is 1-to-1 with a well-defined inverse from
dW (W ) to W . To show that dW is onto Z, I will prove that for an arbitrary
x ∈ X , there is a w ∈ W such that d(x) = d(w). Assume that f and dW
are increasing functions. If either is decreasing, a similar demonstration is
available.

Let x = (s1, . . . , sn) be an arbitrary x ∈ X . If x ∈ W , there is nothing
to show, so assume that x 6∈ W , i.e, not all of the si are equal, and define
m = min si and M = max si. Thus, there is at least one si 6= m and one
si 6= M so

f(m, . . . ,m, y) < f(x, y) < f(M, . . . ,M, y),

for any y ∈ Y , because of monotonicity. If d(m, . . . ,m) ≤ d(x) ≤ d(M, . . . ,M),
the intermediate value theorem guarantees the existence of a m ≤ β ≤ M
such that d(x) = d(β, . . . , β) and clearly (β, . . . , β) ∈ W .

The remaining cases are d(x) < d(m, . . . ,m) and d(M, . . . ,M) < d(x).
Assume the latter—the demonstration for the first case is virtually identical.
Define gi(t) = (1− t)m+ tsi and g(t) = (g1(t), . . . , gn(t)). Note that g(0) =
(m, . . . ,m), g(1) = x, and g is continuous. Note also that f(g(t), y) is strictly
increasing in t. Since d(g(0)) < d(M, . . . ,M) < d(x) = d(g(1)), there must
exist 0 < v < 1 such that d(g(v)) = d(M, . . . ,M) by the intermediate value
theorem. This in turn implies that f(M, . . . ,M, y) = f(g(v), y) < f(x, y).
But this is a contradiction. Therefore, dW is onto Z. The following theorem
sums up this result.

Theorem 5 The function f :X × Y → ℜ, where X = Sn, S ⊂ ℜ is an

interval, W is the main diagonal of X, and f is strongly monotonic in X, is

Z-distributable, Z ⊂ ℜ, if and only if there is a continuous onto r:X → W ,

where r(x) ∈ Fx.
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In other words, f is Z-distributable, Z ⊂ ℜ, if and only if there is a con-
tinuous ρ = ρ(x1, . . . , xn) such that f(x1, . . . , xn, y) = f(ρ, . . . , ρ, y) for all
y ∈ Y . This observation often provides a simple method to determine the
distributability of a monotonic function. First consider a negative example:

f(x1, x2, y1, y2) = x1y1 + x2y2

defined for positive yi. The idea is to find a ρ = ρ(x1, x2) such that

f(x1, x2, y1, y2) = f(ρ, ρ, y1, y2).

But ρ = (x1y1 + x2y2)/(y1 + y2) which necessarily depends on y1 and y2.
Therefore, this function cannot be Z-distributed, Z ⊂ ℜ.

The same method provides a demonstration that the Hölder means are
ℜ+-distributable. These means are defined for each v ∈ ℜ as

hv(x1, . . . , xn) = lim
z→v

(

n
∑

i=1

xz
i

/

n

)1/z

,

where the xi are positive. The limit operator is necessary for v = 0 which cor-
responds to the geometric mean. Consider distributing hv where x1, . . . , xm,
m < n, are the remote elements. To show that hv is ℜ+-distributable in
these variables, it is only necessary to find a ρ = ρ(x1, . . . , xm) such that

hv(x1, . . . , xn) = hv(ρ, . . . , ρ, xm+1, . . . , xn)

lim
z→v

(

n
∑

i=1

xz
i

/

n

)1/z

= lim
z→v









m
∑

i=1

ρz +
n
∑

i=m+1

xz
i





/

n





1/z

.

Clearly there is a solution,

ρ = lim
z→v

(

m
∑

i=1

xz
i

/

m

)1/z

,

that is a continuous function of x1, . . . , xm.
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