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ABSTRACT

The most basic activity performed by an intelligent agent is deciding what to do
next. Usually, the decision takes the form of selecting, from among many applicable
methods, one method to try first, or opting to expand a particular node in a simple
search. The most primitive case is selecting between two independent alternatives.
Below, this case is examined and the value of the control knowledge that makes
the decision is determined. Another result derived is the sensitivity of the expected
value of control knowledge as a function of the accuracy of the parameters used to
make these control decisions.

1 The Problem

Choosing among alternative methods to satisfy a goal is the most frequent
and fundamental activity performed by an intelligent system. Minimizing
expected cost is the natural selection criterion, and how to accomplish this
is determined by control knowledge. There is a tradeoff between resources
spent executing a method and those spent selecting the method since both
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method selection and execution are part of the problem-solving activity. The
question to be addressed is: Under what conditions are the resources spent
on method selection returned to us, with a profit, by savings in method
execution?

This question is investigated for the most primitive and perhaps the most
important control decision of all: selecting between two independent methods
that both might satisfy the same goal; if one method is tried and is successful,
the other is not executed. Therefore, the choice between methods is actually
a choice of their execution order.

Methods or activities are independent if their expected behavior does not
depend on the order in which they are executed. A mathematical model of
the effects of execution order for independent methods is presented and used
to investigate three cases:

(1) method ordering is randomly selected—this is the case where no con-
trol knowledge is used;

(2) method ordering is selected using a priori information about the
methods—this is the case where the best compile-time decision is made by
control knowledge;

(3) method ordering is selected using situation-dependent information—
this is the case where control knowledge makes the best run-time decision.

Several results are derived: (i) the criterion for selecting the execution
order, (ii) the sensitivity of the expected cost as a function of the accuracy
of estimating the parameters used to select the ordering, and (iii) the av-
erage expected reduction in method execution resources when the proper
choice is made using situation-dependent information instead of a priori in-
formation. Since the average expected reduction is an upper bound on the
average amount that should be spent on order selection, the original question
is answered for the primitive case where the methods are independent.

2 Expected Cost of an Ordering

Let x and y be two independent methods that might satisfy the same goal.
Define p, as the probability x will satisfy the goal and e, as the expected cost
to execute . Define p, and e, similarly for y. Since  and y are independent,
Dz €z, Py, and e, do not depend on the order of execution selected for x and

Y.
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Call E(xy) the expected cost of executing x before y, i.e., E(xy) is the
expected cost of the program:

EXECUTE (x) ;
If goal not satisfied THEN EXECUTE(y);

It is easy to see that
E(xy) = e+ (1 —py)ey

because

(1) x is always executed by this program and therefore the expected cost
e, must always be incurred;

(2) y is executed and the expected cost e, is incurred only when x fails
to satisfy the goal,

(3) z fails to satisfy the goal with probability (1 — p,).
Similarly, F(yz), the expected cost of the strategy that executes y first, is

E(yz) = ey + (1 —py)es.

3 A Coin Flip

If method execution is ordered randomly, e.g., by a coin flip, then certainly
no control knowledge is used. In this case, the expected cost CF is

CF [E(zy) + E(yz)]
lex + (1 —pa)ey + ey + (1 —py)ey]

€r+ €y — %[pxey + Pyeal-

1
2
1
2

because the orderings xy and yx are equally likely, and therefore the expected
cost is just the average of E(zy) and E(yx).

4 The Best-Order Criterion

The optimal strategy picks the ordering with the minimum expected cost: If
E(zy) < E(yz), then x is executed first; if E(yz) < E(xy), then y is executed
first; and if E(xy) = E(yx), it makes no difference because the expected cost
of both orderings is the same. Hence, an optimal strategy executes = before
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y whenever E(zy) < E(yz). Therefore, if ¢, = p./e, is defined for z = x
and z = y, a necessary criterion to execute x first is

E(zy) < E(yz),
ex+(1—pr)ey, < e+ (1—pyes,
Dy€z < Paty,
py/ey < Difes,
by < s

Since these steps are reversible, ¢, > ¢,, is both a necessary and a sufficient
condition to execute x before y and achieve minimum expected cost.

The result generalizes in a simple way. Assume that the problem is to
select the order of execution for n mutually independent methods, any of
which might satisfy the goal. Let ¢; be the ratio of the probability of success
to expected cost for method 7, where 1 < ¢ < n. Then the optimal least-cost
strategy is the following: Execute first the method with the largest ¢; if that
method fails, execute next the method with the second largest ¢, and so on.
The ordering among methods with equal ¢’s is immaterial. This and other
related results are developed in [1].

5 A Priori Information

When the measures p,, e,, p, and e, are given, the best ordering is zy if
¢ > ¢, and yx otherwise. Further, the expected cost AP using this a priori
information, is

AP = min(E(zy), E(yx)).

The savings in expected cost using the optimal versus the alternative control
strategy is easy to compute. If ¢, > ¢, the expected savings S is

S = E(yz)— E(xy)
ley + (1 —pyles] — ez + (1 — pa)ey]

= DP2€y — DyCy.

On the other hand, if ¢, < ¢,, the reduction in expected cost using the
optimal ordering (executing y first) is S = E(zy) — E(yz) = pyes — paey.
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Therefore, the expected savings using the best strategy versus the alternative
strategy is

S = |pm6y_pyea:|' (1)

If the best ordering is picked using the ¢’s instead of a coin flip, the expected
savings is CF — AP = S/2, and this is the expected value of the control
knowledge supplying the ¢’s.

6 Situation Dependency

The very best control knowledge tells us, for the current situation, that either
pz = 1 or p, = 0 and that either p, = 0 or p, = 1, i.e., whether z, y, neither,
or both will satisfy the current goal. This is equivalent to dividing the set of
possible situations for method x into two categories: those situations where
x is sure to succeed and those where it is sure to fail, and similarly for y.
Such knowledge is almost never available until after execution and then it is
too late for it to be valuable.

The next best thing is situation-dependent refined estimates of the p’s
and the e’s. For the sake of simplicity, two assumptions are made. First,
the situation-dependent statistics for the various methods are independent
of each other. The second assumption is that e, and e, are essentially con-
stant. Though this is not true in general, the expected cost of a method
is usually not as sensitive to the dynamic situation as is its probability of
success: Methods often employ some sort of simple search, and therefore the
expected cost is related mostly to the size of the problem space rather than
to the particular goal. On the other hand, the probability of success of many
methods is more strongly related to the dynamic situation. For example, x
solves the problem 75% of the time when the goal state mentions endgame
pawn structures, 5% of the time for other pawn problems, and fails miserably
(pr < 0.1% say) elsewhere; dynamic control knowledge examines the situa-
tion to decide which of the three cases exists and assigns p, the appropriate
value.

These assumptions allow us to explore questions about limits on the value
of dynamic control knowledge in a more straightforward way. Section 13
reviews the assumptions and their implications. Next, we look at an example
of situation-dependent behavior, then we define a summary statistic for it.
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7 Situation Taxonomies—An Example

Assume that a method suggests repair plans for electrical equipment. There
are four exclusive and exhaustive equipment categories known by the system
in which the method is used: major appliances, small appliances, tools, and
radio and TV. The problems presented to the system occur in the mix 10%,
40%, 20%, and 30% respectively.

The knowledge in the assumed method is primarily about solid state
components. Therefore, its effectiveness depends on the situation category.
It works very well on radio and TV, problems and solves 60% correctly. For
both major and small appliances it doesn’t do so well and only gets 30%
right. Its success rate is even worse for tools; it handles only 10% of the
problems correctly since most of the mechanism is electromechanical rather
than solid-state.

The situation-dependent behavior of this method is presented in Table 1.
For each situation category in the situation taxonomy, two statistics are

Table 1. Situation-dependent example

Situation category Frequency Probability of success
Major appliance 10% 30%
Small appliance 40% 30%
Tool 20% 10%
Radio and TV 30% 60%

given: the frequency of occurrence of that situation and the probability that
the method will perform correctly in that situation.

8 A Summary Statistic

Situation-dependent information about method z, such as that in Table 1, is
conveniently summarized by F,, where F,(p) is defined to be the probability
that method x will be applied in a situation where its probability of success
is p or less. Thus, F, is a probability distribution of a probability measure.
As always in such cases, F,(0) =0 and F,(1) = 1 is assumed.

Fig. 1 shows F, for the example in Table 1. The graph is generated by
noting the following:
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10 R

Fp) 51

Fig. 1 F, for example in Table 1.

— In no case is there a situation where method x’s probability of success
is less than 10%.

— The probability of success is 10% or less in 20% of the situations (tools).
Therefore, F,, jumps to a value of 0.2 at p = 0.1.

— The probability of success is 30% or less in 70% of the situations (the
union of tools and major and small appliances). Therefore, F, jumps to a
value of 0.7 at p = 0.3.

— Similarly, F, jumps at p = 0.6 to a value of 1 because all situations
have a success probability of 60% or less.

If F, is differentiable, then f, = dF,/dp is a probability density func-
tion. Further, fol fo =1 and f, > 0 because F} is monotonic nondecreasing.
Usually, however, F), is derived from discrete case data and not differentiable
everywhere. Therefore, it is assumed below only that F, € C'! except at a
finite number of places. This assumption allows all the necessary manipula-
tions. Note, F,.(p) = [§ f.(z) d=.

It is evident that p,, the a priori probability that method z solves a stated
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problem, is

Pe = /0 1 pfz(p)dp

because f,(p) is the probability density that x is in a situation where it solves
the problem with probability p. This form can be integrated by parts to show
that
1 1 1
o= [ fp)dp— [ Fpydp=1- [ F@)dp.

Thus, for the example in Table 1, p, = 0.35; this is the shaded area shown
in Fig. 1.

As another example, assume that p, is uniformly distributed in [ri, ry),
ie., fo(pz) = (ro —r1)~! when ry < p, <71y and f,(p,) = 0 otherwise. Then
pr = (r1 +172)/2 and

E(zy) = e, + (1—3(ri+12))ey. (2)

9 Dynamic Control Knowledge

When the situation-dependent control knowledge can refine f, and f, to
situation-dependent estimates of p, and p,, the average savings in method
execution resources is straightforward to analyze. Assume, without loss of
generality, that e, < e,. If ¢, > ¢, i.e., p,/e, > p,/e,, and z is executed
first, the optimal strategy is followed. Therefore, a loss is incurred only if
Pz < Dyes/ey. In that case, the expected loss is E(zry) — E(yx); and L(xy),
the average expected loss over all situations, is

Wey) = [ [ 1050 BGay)  Blye) dp.dp,

Dyer/ey
— /01 /0 Fo(02) f4(y) [Pyer — Dety] dpadp,. 3)

Similarly, the average expected loss when y is executed first (with the con-
dition that e, <e,) is

L(yz) = /0 /pez/e fo(p2) fy(Py) IPrey — Pyes] dpudp,,. (4)

Therefore, the most on the average that can be gained by refining f, and f,
to point estimates of p, and p, is min(L(zy), L(yx)) and this is the average
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expected value of the control knowledge using situation-dependent informa-
tion to make the refinements over the value of the a priori control knowledge
supplying the situation-independent estimates of the ¢’s.

10 A Simpler Case

Assume that methods x and y are indistinguishable by their summary statis-
tics, i.e., f; = fy, = f and e, = ¢, = e. For example, both methods are pos-
sible continuations from the same point in a simple search, and there are no
a priori grounds for distinguishing between two paths. Then L(zy) = L(yx)
by an argument of symmetry, and equation (3) assumes an appealing form.
Let F' be the cumulative distribution for f: F(p) = [I f(2) dz. Therefore,

pay) = [ [ 1) sw)lve — eldedy
= [[ v [ swardy - [ 1) [ efwa ]
=[] wwrwia- [ 1w [re - [ Fe
= o[ ) [ Fyicay
_ e[F(y) /OyF(:v)dx— /O yF(a:)de]
= ¢ /01 Flz) - F(z)da

where we have integrated by parts twice.

It is easy to see which F' produce the minimum and maximum values of
the integral, since F' is monotonic and 0 < F'(z) < 1. The minimum value is
0, and this value is achieved when F(x) — F(z)? = 0. Therefore, F'(z) = 0 or
F(z) = 1 everywhere, and F is a simple step function, i.e., F/(z) = 0 when
x < pand F(x) =1 when z > p for some 0 < p < 1. Such step functions
correspond to point density functions with f(z) = 0 except when x = p.
Thus, the a priori density function is exactly the same as the point density
refinement produced by the dynamic control knowledge: There is no gain in
information, so no work is justified.

The maximum value of F'(z) — F(x)? is 1/4 and is achieved when F(x) =
1/2. This case corresponds to the bimodal distribution where the a priori

dy]

1

y=0

()
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knowledge says that in 50% of the cases the method is sure to fail and that
it is sure to work in the remaining 50%, i.e., there is the most to be gained
by dynamic control knowledge because (i) the situation-dependent control
knowledge can determine with certainty whether = and/or y satisfies the
goal, and (ii) there is maximal a priori uncertainty represented by the two
disparate equal-sized modes. Therefore, the information gain is maximal.

Another example is useful. A reasonable way to represent a priori ig-
norance is f(z) = 1 (and hence F(z) = z), i.e., p is assumed uniformly
distributed in [0,1]. Here, L(zy) = ¢/6 from (5) and E(xy) = 3e/2 from (2)
with 71 = 0 and ro = 1. Therefore, the dynamic control knowledge is at
most worth %e/ %e = é of the total expected work for method execution on
the average.

11 Determining Control Information

Our attention has been drawn to p, and its corresponding density and dis-
tribution functions, f, and F,. The meaning of p, is clear: p, is the fraction
of the time method x satisfies the goals to which it is applied; this statistic
has the distribution of situation occurrences buried in it. The value of p,
is obtained either by experimentation or theory. The significance of f, and
F, may not be so obvious. Perhaps our intuitions will be sharpened if two
hypothetical experiments are described.

Experiment 1 (observation). An intelligent system that includes method
x is implemented. The knowledge engineer adheres to good practice and
provides statistics-gathering facilities as part of his system. Each time it
is run, the system prints a trace of its behavior including, for each method
execution, the name of the method, whether it worked, and the resources it
consumed. Eventually, the accumulated traces are subjected to analysis; p,,
e, and hence ¢, are calculated for method z and any other methods with
which it competes. Since these computed values are situation-independent
and the ¢’s are determined, the preferred a priori ordering of methods is
determined and is available at compile time.

Experiment 2 (observation and situation analysis). The traces from Exper-
iment 1 are augmented with information describing the goal that the method
attempted to satisfy and other situation-dependent data. The knowledge en-
gineer analyzes the additional information to build a taxonomy of situations.
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The methods’ statistics are computed for each situation type. At run time,
the control mechanism, using the same parameters that were present in the
trace, determines the type of situation and can therefore employ the proper
situation-dependent ¢’s to select between alternative methods.

The value of performing Experiment 1 over random method ordering is
|pz€y — Pyes|/2. (See equation (1) and the text following it.) The additional
value of performing Experiment 2 is min(L(zy), L(yz)). (See (3) and (4) and
the text following them.) However, the amount of additional savings depends
on, the shapes of f, and f,, and these in turn depend on the knowledge
engineer’s cleverness in selecting the taxonomy.

As an illustration, assume that data from 1000 executions of a method
have been gathered and we have reason to believe these are a reasonably
representative sample of the occurring situations. Two different taxonomies
are proposed by the knowledge engineer and summarized in Table 2. The
corresponding cumulative distribution function is shown below each taxon-

Table 2. Two different taxonomies

Taxonomy 1 Taxonomy 2
Type # Cases # Satisfy Type # Cases # Satisfy
1 250 150 1 250 100
2 500 250 2 250 150
3 250 150 3 500 300
0, x<05 0, <04
F(z)=4¢ 05, 05<z<0.6 F(z)=4¢ 05, 04<z<06
1, 0.6 <z 1, 06 <z

omy. For the sake of the illustration, assume that there are two methods
with the same statistics. (The meaning of situation classes 1, 2, 3, 1, 2/, and
3" are different for each method since independence is assumed.) Then the
value of the situation-dependent control knowledge is e/40 if taxonomy 1 is
used, while the value is /20 if taxonomy 2 is used. Therefore, the value is
doubled using the latter.

As this example illustrates, the value of situation-dependent control know-
ledge depends crucially on the sharpness of its ability to distinguish differ-
ences in method behavior from one class of situations to another. Further,
the closer the values of p to 1 or 0 for distinguishable classes of situations,
the more valuable the control knowledge. Table 3 shows the limiting case
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where the value of the control knowledge is 99¢/400; there is a significant
amount to be gained using the third taxonomy over using either taxonomy

Table 3. The best taxonomy

Type # Cases # Satisfy
a 550 550
b 450 0
F(x)=9/20

shown in Table 2.

The onus on the knowledge engineer and the rewards for developing good
situation taxonomies are clear. As always, there is no substitute for careful
planning, detailed observation, and proper summary and use of the knowl-
edge gained.

12 Estimation Sensitivity

Accurate values of p,, e, py, and e, are not always available, yet the control
mechanism must still decide whether to execute x or y first. Control knowl-
edge can either estimate these parameters or directly estimate ¢, and ¢,.
The question is, how sensitive is the expected cost of method execution as a
function of the accuracy in estimating the ¢’s by whatever means?

Assume the actual values are ¢, and ¢,, where ¢, = r¢,, such that
r =1+¢€and ¢ > 0. As long as the estimate for ¢, is greater than the
estimate for ¢,, the proper control decision is made: z is executed first.
However, if the estimate for ¢, is accurate but the estimate for ¢, is too
large by a factor of at least r, the wrong ordering is selected. The worst
case occurs when ¢, is overestimated by a factor of 7T; the fraction of extra
expected work is then

[E(yz) — E(zy)]/E(zy) = [pzey — pyea]/[ex + (1 — pr)ey].

Because ¢, = r¢,, it follows that p, /e, = rp,/e, and e, = p,e,/(rp,). Thus,
e, is eliminated on the right by substitution. Since e, will now appear in
every term of the numerator and the denominator, it can be canceled to get

[E(yz) — E(zy)l/E(zy) = [pe — (p2/7)]/ [P/ (rpy) +1 = pal.
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Noting that € = r — 1 and simplifying leads to

[E(yx) — E(xy)]/E(xy) = epepy/[pe + 1Dy — TDaDy)-

The partial derivatives of this form with respect to both p, and p, are pos-
itive. Further, p, and p, must be in the interval [0, 1] because they are
probabilities. Therefore, the maximum is achieved as p, and p, approach 1
where the value is e.

Thus, if ¢, is accurately known but ¢, is overestimated, there is an in-
crease of at most a factor of € in the extra expected work that results because
the suboptimal ordering is selected and this does not happen unless ¢, is
overestimated by at least a factor of 1 + ¢ and p, = p, = 1.

In general, both ¢, and ¢, are estimated rather than just one of them.
Assume that ¢, is misestimated by a factor of 1+¢, and ¢, is misestimated by
a factor of 1+¢,, while ¢, /¢, = r > 1 in actual fact. (Note, €, and €, may be
positive or negative.) Then unless (1+¢,)/(1 4+ €,) > r, the proper ordering
is selected. Since (1+€,)/(1+€,) = 1+ (6, —€x) —€x(€y—€x) +€2 (€ —€2) + -,
the estimation is to the first order, for small €, and ¢,, about 1 + (¢, — €,).
Therefore, if r = 1 + € and ¢, — €, < €, the proper control decision is made;
and if €, — €, > €, the maximum increase in expected work is bounded by a
factor of € and the worst case can occur only when €, — €, = €.

Therefore, reasonable estimates lead to reasonable behavior because the
fraction of increased extra work is no worse than linearly related to the
accuracy of these estimates. This result applies both to the a priori estimates
for a method as a whole and to estimates of situation-dependent information.

13 Summary and Discussion

A mathematical model has been developed to investigate the effects of exe-
cution order among a set of independent methods, any one of which might
satisfy the same goal. Several results have been developed:

(1) the criterion for ordering execution of the methods to achieve least
expected cost:

(2) the expected savings using a priori estimates of the methods’ statistics;

(3) the sensitivity of problem-solving cost to the accuracy of estimation
of these statistics;

(4) the average expected savings in problem-solving cost using dynamic
control knowledge;
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(5) the value of better situation categories.

Results (4) and (5) are developed with the assumption that the expected
cost of executing a method does not depend strongly on the current situa-
tion. The mathematics are simplified by the assumption because integration
over situations is a messy business and because the appropriate situation
taxonomy for expected work may be different from the one for probability of
success.

The constant-cost assumption and the restrictions it entails need not
extend into actual use of the above results. Experimental statistics-gathering
approaches are described in Section 11. The knowledge engineer can and
should consider employing similar empirical techniques to estimate situation-
dependent values of expected costs in addition to the success probabilities
so that he can compute the situation-dependent ¢’s for the elements of the
cross product situation space of the categories for expected cost and those for
success probabilities. However, more data collection is necessary to justify
this move.

A reasonable compromise exists between assuming constant expected cost
and performing a full statistical analysis. The knowledge engineer can de-
velop a situation taxonomy based on ¢ values rather than p and/or e values.
The objectives of this taxonomy are (i) the ¢’s for the cases within each
category should be as nearly alike as possible and (ii) the expected ¢ values
between categories should be as widely separated as possible. The compro-
mise position is not only a good idea in practice, but in theory, too, as a
careful review of the mathematics will show.

Several issues remain. The first issue is the independence assumption.
Not only is the behavior of many methods dependent on the system’s previous
execution history, but dependency is a reasonable goal for method design:
A good method should be able to profit from others’ experiences. How to
augment the current model to include the concept of dependency is not clear.

Another issue is that the model only minimizes cost. Since system be-
havior is measured in terms of the merit of the solutions it proffers and the
way the solutions are developed, as well as the cost to find those solutions,
this model is not realistic. All such tradeoffs are buried in the concept of a
goal. The model would provide more guidance if the various facets of system
evaluation were unbundled.

These and many other issues deserve our attention because the problem
of method selection is the central problem for an intelligent system. The
results developed here are a start, but they apply only to the most primitive
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case where the methods are independent.
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