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POWER AWARENESS

Abstract Optirnizing resourcc allocation to best lneet system goals is tlre essencc of good
enginccring. It is the unifoing principal in the design of resource-constrained
systelns such as aircraft, fanring cornplexes. and evcn ntilitary forces. Well-
dcsigned systelns accornplish tasks using rninirral resourccs. They also dynarni-
cally adapt thcir mcthods and goals to best use available resources. This is as ev-
ident in artificial systelns as it is in natural systems. Below, two exarnplcs onc a
design tirre problern and the othcr a dynan.ric allocation problem are dcvcloped
to elucidate the soft of engineering that rrust bc applied to resource managclncnt.
The flrsl exarnple is a design tradeoff bctween the efllcicnl use of electric power
and the perfomance of an aircraflt. The second exarnple is dynauric allocation
of a liruited energy budget bcnvccn cooperating sensors to rnaxlrnizc thc qualiry
of the cornbined rreasurernent.

Keywords: Power aware design. dynarlic energy rnanagclnent

Introduction
The most successtul of nature's systems are those that have adaptations to

optimally use available resources. The form factors of birds and fish, for exam-
ple, are both optirnized for efficient motion. Since drag, density, and buoyancy
in the air and in water are different, their shapes are quite diflerent. Thus, we
observe that design optimizations are specific to environments.

Dynamic adaptation of behavior is another aspect of energy optimization.
Ordinarily, animals select prey that maximize the expected return over their
investment to catch it. However. in times of great need, minimal margins are

readily accepted and in times of plenty, indifferent choices are made. Plants

adapt their processes to such factors as the availability of sunlight, moisture,
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and nutrients. Even the reproductive decisions of some species are affected by
environmental cues and the state of the individual at the time. Nature has in-
deed developed energy-aware systems that in both design and behavior exhibit
resource awareness.

Current events highlight the need for energy-aware artificial systems too.
Our petroleum resources are rapidly dissipating and utility companies cannot
produce enough electricity to meet all of our demands all of the time. If these
were the only drivers, conservation remedies, new energy sources, and normal
engineering progress would hold the problems in check.

However technology, particularly the modern computer, promises new types
of systems for applications that will operate in severely energy-constrained en-
vironments. Extended duration space exploration is one well-known example.
Another is the construction and deployment of unattended sensor networks
comprising 1000’s of miniaturized elements. Each element must be put in
place with sufficient power, e.g., from a battery, to last its entire lifetime and
support sensing, computing, and communications. Elements, in addition, may
scavenge energy from sunlight, natural vibrations, or even chemical interac-
tions with the environment. Energy management and optimization clearly will
be of overriding importance in the design of these systems as will the need to
dynamically adapt their behavior by considering the urgency of goals and the
available resources.

Below, two examples of power-aware applications are described. The first is
aircraft design where energy conservation contributes to overall performance
by reducing battery and generator weight to enable longer flight times. Sec-
tion 1 develops the mathematical relationship linking power efficiency to per-
formance. That relationship is used to examine tradeoffs in terms of two differ-
ent aircraft. Section 2 considers an application where multiple sensors develop
joint measurements while sharing an energy budget. The goal is to minimize
the variance of the resulting measurements while using the least energy pos-
sible and still meet system objectives. Thus, the second example is dynamic
decision-making in the management of resources.

Section 3 summarizes the results and relates them to similar observations
in other fields. The goal of this paper is not to present the development of
specific new technology. Rather, it is too provide examples of how engineers
can reason about and construct application-specific systems that will operate
in energy-constrained environments.

���������
	 q �Fi
� � q � ����� j6q � q �
��j6q lFi�� l�k � q k�p�k���� j

The value of power awareness and energy reduction technologies are deter-
mined by the specifics of an application domain and the milieu in which its sys-
tems will operate. Intelligent power management is one of the key technology
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enablers to successful deployment of deep space probes, networks comprised
of miniature battery-powered sensors, and the Land Warrior. Below, a simple
relation between energy efficiency and maximum flight time (endurance) for
aircraft is derived. That relation is used to model the value of efficient design
as measured by increased endurance: Sometimes it is very valuable and some-
times it is not. The point of this exercise is not to solve aircraft problems per se.
Rather, it is to introduce the sort of domain-specific analysis that is necessary
to make design-time tradeoffs for an application.

��� � � l � �Fq i�� lFi 	 q m � k���j6q lFi 	

Weight is the enemy of air vehicle performance. Heaviness directly de-
creases maneuverability, handling, range, and endurance, where endurance is
maximum flight time. Since savings in the use of electrical energy will reduce
the weight of the generator, the battery, or both, power awareness will increase
the missions that a given aircraft can undertake and complete. Another benefit
of weight reduction is that the weight budget for the fuel used to power the air
vehicle can be increased when the battery or generator weight is decreased.

Reducing electric power consumption also decreases heat production. There-
fore, more equipment can be packed into the same or smaller form factor. Since
decreasing size increases maneuverability, range, and endurance, we have an
additional argument for power awareness. Further, obvious benefits accrue
when power-aware avionics can compensate for unusual situations such as
generator loss. This example makes the point that power awareness is more
than energy minimization: it’s about doing the best you can with the resources
that are actually available.

Concerns about the effects of electric energy consumption on aircraft perfor-
mance are not new. For example, space and heat considerations are discussed
in [2] along with their impacts on operational costs. Power awareness is even
more important in the modern world. One example is the Helios, a product of
AeroVironment Corporation, with the goal of indefinite sustained flight pow-
ered by scavenging solar energy. Other extreme examples are smart munitions
that either have no propulsion system or only use propulsion in burst modes.
Since there is no engine-powered generator, all electric energy must be sup-
plied by batteries to support sensors, computation, communications, and con-
trol surface actuators. Batteries are a limiting resource that produce unwanted
heat, consume precious space, and add weight.

The standard relation approximating the endurance achievable by an aircraft
as a function of its weight and the amount of fuel it carries is derived next.
The following discussion extends that relation to include the effects of electric
power utilization efficiency, hence battery weight, on endurance. Finally, that
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relation is used to analyze the effects of power efficiency on endurance for two
example aircraft.

��� � � iMmMonk���iMp � q 	 ���MoMiMp�j6q lFi*l���� � q ���Fj���iMm��Mo �
	
The relation between endurance and an air vehicle’s weight and the amount

of fuel it carries is derived here. A reasonable first-order approximation is used
to simplify the mathematics: instantaneous fuel consumption rate is linearly
related to total vehicle weight for a constant velocity and altitude. The next
section extends the relation to consider the effects of electric energy conserva-
tion on weight, hence, its relation to endurance. See [7] for justification of the
assumptions made here as well as derivations of more detailed relationships
when other variables are considered.

Let f � f � t 
 be the amount of fuel remaining at flight time t and let f0 �
f � 0 
 be the amount of fuel loaded on an aircraft that weights Wd dry (fuel
weight is zero). The assumption is that the amount of fuel, measured by weight,
necessary per second of flight time per unit of aircraft weight is a constant.
Thus,

f ����� c �Wd � f 

where f � � d f � dt and c � 0 is the fuel consumption constant. The solution to
this simple ode, subject to the constraint that f � 0 
�� f0, is

f � t 
�� W0e � ct � Wd �
where W0 � Wd � f0 is the initial weight of the aircraft at t � 0.

The endurance, E, is defined to be the maximum flight time. Clearly, f � E 
��
0 is the condition to find that unique value of E. Therefore,

E � 1
c � log

�
W0

Wd ��� (12.1)

An explanation, in part, for this, perhaps unexpected result, is that in order
to increase endurance, more fuel is obviously needed. But, additional fuel is
necessary to carry the original extra fuel, etc. Thus, weight has a nonlinear
effect on endurance. Note, this derivation is a reasonable approximation for
many land as well as airborne vehicles.

��� � � iMmMonk���iMp � q 	 ���MoMiMp�j6q lFi*l�� � i � k��! 
� lFi 	 � k#"���j6q lFi

In order to extend the above derivation to account for a battery and, hence,
to account for the efficiency with which that battery is used, a few details must
be added to our simple model. Let WS be the structural weight of the aircraft
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and WB be the weight of its battery. Thus,

Wd � WS � WB

W0 � WS � WB � f0 �
In order to focus on the relevant tradeoff for this discussion—battery weight
versus fuel—define L � WB � f0 as the total weight budget for fuel plus battery
and β as the battery weight needed for one unit of mission time. Thus, WB �
βE. β is interpreted as the efficiency of the energy consumers not of the battery,
though the analyses are practically identical in either case. Now,

Wd � WS � βE

W0 � WS � L �
where the first equation assumes that there is just enough battery to last for the
whole mission. In other words, L is split between fuel and battery weight so
that both resources expire simultaneously. There is one important difference
between fuel and battery that makes these equations non-symmetric: when fuel
is consumed, its weight decreases but no such reduction will be observed for
batteries. Substituting the formulas into (12.1) yields

E � 1
c � log

�
W0

WS � βE � �
What we desire is an expression for E as a function of β so that the payoff
of efficient energy utilization can be measured in terms of endurance enhance-
ment. A quick inspection shows that an elementary expression isn’t available.
However, it is straightforward to express β as a function of E:

β � W0 � WS exp � cE 

E exp � cE 
 � (12.2)

Clearly, the value of E must be positive and is bounded from above by the case
where f0 � L and, hence, β � 0. Thus,

0 � E �
log �W0 
#� log �Ws 


c � (12.3)

Equation 12.2 and the bounds on E are used below to numerically generate and
graph � β � E 
 pairs for some examples.

��� � � q k�p�k���� j ��� ��� � 	 �
	���� i � 	  	 q 	
Two simple examples of vehicles designed for quite different mission pro-

files are analyzed in this section. The first, called Explorer, is a simple un-
manned sensor craft that uses a generator to support most applications. It flies
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� G R U O�� � � � �
Parameters defining two aircraft examples.

Example c WS L W0 Emax

Explorer .00155/min 6,900 lb 3,100 lb 10,000 lb 240 min
Missile .05108/min 15 lb 10 lb 25 lb 10 min

missions of a few hours duration and its battery is primarily for power during
emergencies, e.g., for flight recorders or engine restarts after flame outs. The
second example, called Missile, is a smart munition that uses batteries to power
all onboard electronics. Fuel is only used in burst mode to regain altitude so
as to increase target seek time. Its mission times are of the order of a few min-
utes. Table 12.1 summarizes the relevant parameters for these two hypothetical
examples and Emax � log �W0 � Ws 
 � c is the maximum endurance from (12.3).

E versus β pairs have been generated using (12.2) and are displayed in Fig-
ures 12.1a and 12.1b. Endurance, E, clearly increases as electric power utiliza-
tion, as measured by β, decreases. There is no way to tell, at this point in the
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E versus β relation for the
Missile example.

development of the two examples, whether power-saving measures would be
worthwhile or not. We need to know the current β, the merit of a ∆E measured
as an increased fraction of successful missions, and the cost of developing and
inserting power-aware technology that can provide the ∆E in order to make
that determination.

Such details are beyond the scope of this paper though a simple heuristic
analysis is presented. Figures 12.2a and 12.2b suggest the shapes of typical
tradeoff curves: p � p � E 
 is the probability of a successful mission if en-
durance is E and C � C � ∆E � E 
 is the cost to achieve an incremental endurance
enhancement given the current value of E. Design tradeoffs are then formed in
terms of this and other relevant information.

The Explorer example posits that batteries are not the main source of elec-
tric power and it is fair to assume that its designers made various decisions to
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p

E
�
J V D > O � � � � G �

Probability of mission
success as a function of endurance.

C

∆E
�
J V D > O � � � � R �

Cost to increase en-
durance as a function of the desired incre-
ment.

maximize endurance. In other words, it is unlikely that the total weight of the
generator and battery are a significant fraction of the total vehicle weight. Fur-
ther, f0

� L. Therefore, power-awareness, even if it could reduce the generator
weight cannot increase endurance by more than a few minutes.

The Missile example is completely different. Battery weight is a significant
fraction of L and L is a significant fraction of W0. Once again, conservation
can only increase endurance by a few minutes but a few minutes, compared to
a current endurance of less than 10 minutes, could make all the difference in
whether or not missions are successful.

��� � � �  8lFiMm ���
	 q �Fi
� � q � ����� j6q � q �
��j6q lFi
The results and examples developed above are meant to show how consid-

erations of power utilization can impact overall system performance. In par-
ticular, the effects of energy conservation on maximum flight time are demon-
strated. Energy conservation, however, is only one aspect of power awareness.
The more general problem is to dynamically determine how to optimize mis-
sion goal achievement as a function of the resources actually available. This is
a much more difficult problem and is even more of an application-dependent
issue than is straightforward energy minimization.

The Missile example suggest a plethora of interesting power management
problems. For example, given a projected time to target impact maximize the
probability of a successful strike. The problem is how best to use the remain-
ing battery energy during the known flight time. Should sensor resource al-
locations be increased or should communications and computation be used to
receive and fuse an ally’s sensor data with onboard information? The answer
depends on the resources available as well as the relative quality and costs of
the two solutions. In other words, real power awareness depends on the ability
to make dynamic, situation-dependent as well as application-dependent deci-
sions. The sort of design-time tradeoffs analyzed herein are important too, but
they are only a first step toward realization of fully power-aware systems.
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� ���  Mi ��� q p � i � k��! � 	 	 lnp
��j6q lFi � l�k � lnl � � k���j6q i �
� � i 	 l�k 	

The problem considered in this section is how to split a limited energy bud-
get between several sensors whose measurements will be fused. The objec-
tive is to minimize the variance of that joint measurement. A simple fusion
model is defined, measurement variance is related to energy expenditures, and
a criterion for an optimal allocation is derived. An extended example of a dy-
namic allocation problem and its solution is presented in three parts: (1) a spe-
cific model of sensor variance as a function of energy allocation is introduced,
(2) the optimality problem for two sensors described by that particular model
is solved, and (3) a numerical example is used to illustrate an optimal policy
and the sort of decision-making that it engenders. This note is meant as an
example of how one might formulate and solve dynamic energy management
problems and not as a definitive practical result.� � � �Mo 	 q i ��� � i 	 l�k�� � � 	 onk � � � iFj 	

If sensors 1 � � � � � n make measurements m1 � � � � � mn that are statistically in-
dependent, the joint estimate m is taken to be

m � w1m1 ��� � � � wnmn

w1 ��� � � � wn
� (12.4)

where wi � v1 � � � vn � vi and vi is the variance of measurement mi. The variance,
v, of the joint estimate is

v � 1
1
v1
��� � � � 1

vn

� (12.5)

The function, v � v � v1 � � � � � vn 
 , has the following intuitive properties:

Less is better:
∂v
∂vi

�
0.

Progress: v � v1 � � � � vn 
�� vi.

As good as it gets: v � v1 � � � � � vn 
 � 0 if any vi � 0, a corollary of progress.

No pain, no gain: v � v1 � � � � � vn 
 � v � v1 � � � � � vi � 1 � vi 	 1 � � � � � vn 
 if vi � ∞.

Unit independence: v � rv1 � � � � � rvn 
 � rv � v1 � � � � � vn 
 � 0.

Some justification is provided in [6] for the formulas assumed here as well
as an introduction to the general topic of fusion using Kalman filters. Note,
fusion formulas such as (12.4) and (12.5) are more complicated if the sensor
measurements are statistically dependent or if multiple features are measured
as is often the case.
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� � � � i � k��! � 	 	 lnp
��j6q lFi ��� j � k
� q i �
	 � � i 	 l�k
� � k�� l�k
� ��iMp �

Modern sensors offer many controls that trade energy for performance. Ex-
amples are raw power, pulse width, number of pulses per measurement, fre-
quency of measurement, and even spectrum choices for hyperspectral sensors.
Some passive sensors can vary the number of pixels or the parts of the spec-
trum that are processed. The more energy used, the higher the quality of the
measurement. Below, quality is grossly summarized by the resulting variance
of the measurement. Specific issues such as precision, etc., are assumed to be
sufficiently captured by the variance estimate.

Let vs � e 
 represent the variance expected when sensor s makes a measure-
ment using energy e

�
0. Such a function should satisfy these criteria:

Positivity: vs � e 
!� 0.

More is better:
dvs

de
� 0.

No free lunch: vs � 0 
�� ∞.

The astute reader may be troubled by the no free lunch property. Isn’t there
always some a priori information available so that the initial variance would
be finite? For example, an angle measurement is always in the interval � 0 � 2π 
 .
The way to analyze the situation is to assume that the variance of the a priori
estimate is v0 and to combine it with v1 � � � � � vn to get the combined variance,
v � � v � 1

0 � v � 1
1 � � � � � v � 1

n 
 � 1. Since the optimality criterion derived in the next
section is the same whether v0 is accounted for or not, the math is simplified
by ignoring the presence of a priori estimates.� � � � q i�q � q ��q i ��� ��k q ��iMp � � �nk�lFo ��� � i � k��! 

� 	 	 lnp
��j6q lFi
Given a total energy budget, e, to be used to obtain independent measure-

ments m1 � � � � � mn, the obvious objective is to divide it so that the resulting
variance is minimized. Assume that ei

�
0 is used for the measurement made

by sensor i. The problem is to minimize (12.5) subject to the constraint that
e1 ��� � � � en � e. Simply use Lagrangian multipliers as follows:

v � e1 � � � � � en � λ 
 � 1
1
v1
��� � � � 1

vn

� λ � e � ∑ei � �
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Necessary minimization criteria follow from dv � dei � 0:

0 � dv
dei� � v �i � v2

i�
1
v1
��� � � � 1

vn � 2 � λ

v �i
v2

i

��� λ
�

1
v1
��� � � � 1

vn � 2 �
where v �i � dvi � dei. Since λ does not depend on i, the entire right hand side is
independent of i. Therefore,

v �i
v2

i

� v � j
v2

j
� (12.6)

for all 1 � i � j � n. Standard dynamic programming techniques can be used to
develop optimal allocations when there are more than two sensors.� � � � � � 	  �q i � j�� � � � � l�k# 

This section develops an example of variance minimization through energy
allocation. The problem of achieving a given result quality with minimum
resource investment is addressed in the following section. Both problems are
examples of dynamic energy management. The discussion proceeds in three
parts: (1) a specific, parameterized sensor model that defines variance as a
function of energy is introduced, (2) the two-sensor minimization problem is
solved, and (3) the optimal allocation policy and the variance achieved are
analyzed for particular sensor instances.

��� ��� ���	��

� 
������ ��� � � �������
��� ������������ �
The form of vi as-

sumed in the optimization example developed in the rest of this section is

vi � e 
 � ai � bi � e � (12.7)

where ai � bi � 0. Such forms obviously possess the properties required above
for variance functions. For future reference, note that

dvi

de
� � bi

e2 � (12.8)

The parameters ai and bi have the following interpretations in this formulation:
ai is the limit of the sensor’s operation, i.e., ai � vi � ∞ 
 , and bi is the difference
between the sensor’s variance using one unit of energy and its best possible
performance, i.e., bi � vi � 1 
#� vi � ∞ 
 .
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��� ��� � ���� � � ��� � ������� �	� ���
��� ��� � � ��
� �
� � Assume two inde-
pendent sensors whose behaviors are defined by (12.7) and a total energy bud-
get of e. Let energy 0 � x1 � e be allocated to the first sensor and x2 � e � x1

be allocated to the second. Then from (12.7) and (12.8),

v1 � x1 
 � a1 � b1 � x1

v2 � x2 
 � a2 � b2 �#� e � x1 

v �1 � x1 
 � � b1 � x2

1

v �2 � x2 
 � � b2 �#� e � x1 
 2 �
Now use criterion (12.6) to find the optimal allocation as follows:

v �1
v2

1

� v �2
v2

2� b1 � x2
1� a1 � b1 � x1 
 2 � � b2 �#� e � x1 
 2� a2 � b2 �#� e � x1 
 
 2

b1� a1x1 � b1 
 2 � b2� a2 � e � x1 
 � b2 
 2�
b1 � a2 � e � x1 
 � b2 
 � �

b2 � a1x1 � b1 
 �
The solutions to this linear equation for the optimal x �1 and x �2 � e � x �1 are

x �1 � e 
 � a2
�

b1e � b2
�

b1 � b1
�

b2

a1
�

b2 � a2
�

b1
(12.9a)

x �2 � e 
 � a1
�

b2e � b1
�

b2 � b2
�

b1

a1
�

b2 � a2
�

b1 � (12.9b)

Since x �1 and x �2 must be nonnegative, the numerators must be nonnegative.
Thus, there are two validity constraints entailed by (12.9a) and (12.9b):

e � �
b1b2 � b2

a2

e � �
b1b2 � b1

a1

If the first constraint is violated, the optimal allocation is x �1 � 0 and x �2 � e.
If the second is violated, the optimal allocation is x �1 � e and x �2 � 0. In the
first case the resultant minimum fused variance, v � , is v � � e 

� a2 � b2 � e and
in the second the minimum variance is v � � e 
!� a1 � b1 � e. When there is an
“interior” solution, v �1 and v �2 are calculated by substituting (12.9a) and (12.9b)
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into (12.7) to get

v �1 � x1 
 � a1a2e � a1b2 � a2b1

a2e � b2 � � b1b2

v �2 � x2 
 � a1a2e � a1b2 � a2b1

a1e � b1 � � b1b2 �
These values are substituted into (12.5) and simplified to calculate the resultant
minimum total variance as

v � � e 
 � a1a2e � a1b2 � a2b1� a1 � a2 
 e � � � b1 � � b2 
 2 �
Table 12.2 summarizes these results for the optimal allocation policy: x �1 � e 
 is

� G R U O�� � � � �
Formulas for optimal energy allocations and resulting variances.

0
�

e �
�

b1b2 � b2

a2
0
�

e �
�

b1b2 � b1

a1
Otherwise

x �1 � e � � 0 e
a2
�

b1e � b2
�

b1 � b1
�

b2

a1
�

b2 � a2
�

b1

v �1 � e � � ∞ a1 � b1 	 e a1a2e � a1b2 � a2b1

a2e � b2 � � b1b2

x �2 � e � � e 0
a1
�

b2e � b1
�

b2 � b2
�

b1

a1
�

b2 � a2
�

b1

v �2 � e � � a2 � b2 	 e ∞
a1a2e � a1b2 � a2b1

a1e � b1 � � b1b2

v � � e � � v �2 � e � v �1 � e � a1a2e � a1b2 � a2b1

� a1 � a2 � e � � � b1 � � b2 � 2

the optimal allocation of total energy, e, to the first sensor and v �1 � e 
�� v1 � x �1 � e 
 

is the variance it achieves. The functions x �2 and v �2 are similarly defined for the
second sensor. Finally, v � � e 
#� v � v �1 � e 
 � v �2 � e 
 
 is the minimized variance of the
fused measures given total energy budget e.

��� ��� 
 ���
�� ��� ��� � ����� ��� �� � � �
This section develops a simple

numerical example with two sensors. The resulting allocation policy and vari-
ance as a function of energy curves exhibit some interesting behaviors. Formu-
las for the optimal allocation policy and the resulting variances, derived from
Table 12.2 using the constants a1 � 4, b1 � 8, a2 � 3, and b2 � 18, are shown
in Figure 12.3a.

The optimal allocation of energy to the sensors is depicted in Figure 12.3b.
Initially when 0 � e � 1 � � � b1b2 � b1 
 � a1, all of the available energy is
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allocated to the first sensor; when e � 1, it is split between the two sensors.
The first sensor continues to receives a larger allocation, i.e, x �1 � e 
 � x �2 � e 
 ,
while 0 � e � 4 but there is a role reversal when e � 4 where x �1 � e 
 � x �2 � e 
 .
When e � 4, x �1 � e 
 � x �2 � e 
 � 2.

The variances achieved using the optimal allocation policy are shown in Fig-
ure 12.3c where a log-valued vertical distance scale has been employed to im-
prove visualization. The first sensor gives better results (has a lower variance)
when a relatively small amount of energy is available but its limiting behavior
is not as good as the second sensor. The variance of the fused measure, v � ,
coincides with v �1 when 0 � e � 1. From then on it is lower. The contribution
from the first sensor has lower variance than the second, i.e., v �1 � e 
 � v �2 � e 
 ,
while 0 � e � 10. However, v �1 � 10 
�� v �2 � 10 
�� 6 and the second sensor’s
contribution finally dominates when e � 10.

This example was deliberately contrived to exhibit crossovers in both the
optimal resource allocation policy and the quality of the results as shown in
Figures 12.3b and 12.3c. The purpose of this ploy was two fold: (1) to indi-
cate that even simple models can lead to complex or unexpected behavior and
(2) to make the point that straightforward analytic methods can usually derive
or approximate the actual optimal policy to be applied dynamically.� � � � �
	 ��j � m � k�l�� 	 � � 	

The area of dynamic sensor management and scheduling comprises many
related problems. For example, the problem may be to develop an estimate
that is good enough, i.e., to use the least energy to achieve a specific vari-
ance. This problem can be solved using formulas such as those in Table 12.2.
The necessary minimum energy, e � , is found from the inverse of v � . This is
straightforward because v � is a necessarily monotonic function. The appropri-
ate allocations are then calculated as the values of x �1 � e � 
 and x �2 � e � 
 .

In a more realistic scenario, the analyst would need to account for the fact
that measurements are not statistically independent, as assumed above, con-
sider additional tradeoffs, and deal with measurement sources whose analytic
descriptions are different than one another, e.g., it might be more economical
to use communications to obtain an ally’s measurement and fuse it than to use
some or all of the local sensors.

Problems related to those above are discussed in [4] and [5] . Since some
sensors can be time multiplexed amongst several applications, more applica-
tions can be serviced if the fraction of the sensor resources needed for each
is reduced. A combination of filtering (fusion) and modelling is used. The
models, formed from filter output parameters, predict target behavior between
sensor measurements. The models also predict the variance increase as time
of model use increases. That information is used dynamically to minimize the
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product of measurement duration and update rate for each application while
maintaining track quality. Such techniques could be adapted by power-aware
sensor schedulers. A benchmark facility to compare algorithms of this sort is
avaible in [1].

Dynamic reasoning about the use of scarce resources is becoming more im-
portant as time goes by. It is an area that will pose many interesting science
and engineering challenges in the future.� ��� � j � k �

l�k�m

Much of our understanding of the world around us is gained through hy-
potheses about how systems manage energy. Physicists assume least energy
principals to form laws about the universe in the large and interactions of sub-
atomic particles in the small. Biologists explain life, in part, by showing how
organisms scavenge energy from the environment and store it for their own use
at later times.

So concerns about power-aware systems are certainly not new. What is
different today is that engineers are proposing and building systems whose
functioning is all about energy management. Deep-space exploration and large
unattended miniature sensor networks are two examples mentioned above. In
these and other systems of the same ilk, power awareness is a primary design
and operational principal, not just another support technology.

It may surprise the reader to know that Sigmund Freud proposed an energy
minimization principal, as part of a cognitive economy model, to partially ex-
plain the workings of the human mind. He described dreaming and humor
processes through a minimization of a quantity called psychical energy. I will
close with a quote [3] that seems particularly germane to our current topic:

“I may perhaps venture on a comparison between psychical economy
and a business enterprise. So long as the turnover in the business is very
small, the important thing is that outlay in general shall be kept low and
administrative costs restricted to the minimum. Economy is concerned
with the absolute height of expenditure. Later, when the business has ex-
panded, the importance of the administrative cost diminishes; the height
reached by the amount of expenditure is no longer significant provided
that the turnover and profits can be sufficiently increased. It would be
niggling, and indeed positively detrimental, to be conservative over ex-
penditures on the administration of business. Nevertheless, it would be
wrong to assume that when expenditure was absolutely great there would
be no room left for the tendency to economy.”
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