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Abstract

The number of shapes of trees tightly balanced by subtree size are counted. The

branching factor is constant and the balance criterion is that sizes of sibling subtrees

differ by no more than one node. The sequence of the number of tree shapes, with the

branching factor fixed, for increasing tree size has a fractal-like graph. The reason for

this appearance is explained.

Keywords: Balanced trees, tree shapes, combinatorial problems, data structures.

1 Preliminaries

Tree structures are used to organize data for efficient processing. Some restrictions on

possible shapes must be imposed to guarantee that efficiency. One typical restriction is that

sibling subtrees must have approximately the same height. Another is that sibling subtrees

must have approximately the same size measured in nodes. Both restrictions, supplemented

by suitable node labeling schemes, enable efficient insertion and retrieval algorithms. Such

trees are said to be balanced. AVL trees [5], B-trees [1], and Red-Black trees [2] are some

well-known examples of balanced trees. Knuth [3] provides algorithms and analyses for

constructing, searching, and maintaining balanced trees of various sorts.

This article develops formulas that count the number of shapes of trees tightly balanced

by subtree size. These trees will have a constant branching factor or width, w. So a (sub)

tree is either “nothing” or a root node with w subtrees. A node is balanced if the difference
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in size of each pair of its subtrees is at most one node. A tree is balanced if all of its nodes

are balanced. These tree are also height-balanced in the sense that variance over root-to-leaf

path lengths is one node at most.

Here is the definition of ‘
.
=’ the same shape predicate: 1) λ

.
= λ, where λ is the tree with

no nodes; 2) if ui
.
= vi, where 1 ≤ i ≤ w, u is a node with the ordered list of subtrees ui,

and v is a node with the ordered list of subtrees vi, then u
.
= v. In other words, two shapes

are the same if they look the same when drawn on paper. If u
.
= v, then u and v necessarily

have the same number of nodes.

2 Recurrence Formula

Let sw(z), where z ≥ 0 and w ≥ 1, be the number of shapes of balanced trees with branching

factor w and z nodes. It is easy to see that s1(z) = 1 for all z ≥ 0. Henceforth, assume

w > 1.

Recurrence formulas used to calculate sw are developed here. These formulas relate

various values of sw(z) to sw′(z′) where w = w′. In other words, there is formula for each

w > 1. Clearly sw(0) = 1 because the empty tree shape is unique and sw(1) = 1 because the

only shape with one node is a root with w empty (λ) children.

The recurrence relation for larger tree sizes is

sw(nw + 1 +m) =

(
w

m

)
sw(n+ 1)msw(n)w−m, where 0 ≤ m ≤ w and n ≥ 0. (1)

If a tree has nw+ 1 +m nodes, one node must be the root, m children of the root must have

n+ 1 nodes, and the remaining w−m children must have n nodes; the tree can be balanced

in no other way. Now observe that 1) the m of w subtrees with n + 1 nodes can be chosen

in
(
w
m

)
ways and 2) the choice of the shape of each subtree is independent of the others. So

formula (1) follows. The case where n = 0 is of interest:

sw(1 +m) =

(
w

m

)
where 0 ≤ m ≤ w. (2)

Sequences generated by s2, . . . , s7 are registered on the OEIS Sequence Server [4] and initial

values of s2, . . . , s6 are shown in Table 1.
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3 Divisibility Properties

The recurrence formula (1) clearly entails that sw(z) must have the form
∏w

i=0

(
w
i

)xi for

nonnegative integers xi that depend on z. Since
(
2
i

)
is 1 or 2 when 0 ≤ i ≤ 2, s2(z) must be

an integer power of 2. Similarly,
(
3
i

)
is 1 or 3 when 0 ≤ i ≤ 3 so s3(z) must be an integer

power of 3. However, when w > 3, there are z such that sw(z) is not an integer power of w.

For example,
(
w
2

)
= w(w − 1)/2 is not a power of w when w > 3.

It is also straightforward to see from (1) that the sum of the sw(z) for z = nw + 1 + m

and m = 0, . . . , w is some integer raised to wth power. To wit:

w∑
m=0

sw(nw + 1 +m) =
w∑

m=0

(
w

m

)
sw(n+ 1)msw(n)w−m

=
(
sw(n+ 1) + sw(n)

)w
.

4 Return to Unity

Define σn
w as the n+ 1 digit base-w number 1 . . . 1, i.e.,

σn
w =

n∑
i=0

wi,

and note that σn+1
w = w ·σn

w+1. Also note that sw(σ0
w) = sw(1) = 1. Now assume sw(σn

w) = 1

for all 0 ≤ n ≤ x. So using (1)

sw(σx+1
w ) = sw(wσx

w + 1)

=

(
w

0

)
sw(σx

w + 1)0sw(σx
w)w

= 1

and this proves, by induction, that

Theorem 1. sw(σn
w) = 1 for all n ≥ 0.

The unique tree shape with σn
w nodes is the one where every root-to-leaf path is length

n, i.e., the tree is perfectly balanced and the w children of each leaf—there are wn+1 in

total—are all λ. As nodes are added, some of the λ are replaced with new leaves. When
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wn+1 nodes have been added, the tree is again perfectly balanced with σn+1
w nodes and all

root-to-leaf paths are now length n+ 1.

Theorem 2. The sequence sw(σn
w), sw(σn

w + 1), . . . , sw(σn+1
w ) is symmetric in the sense that

sw(σn
w + z) = sw(σn+1

w − z) for all n ≥ 0 and 0 ≤ z ≤ wn+1.

Proof. If z = 0 or z = wn+1 the claim follows from Theorem 1. When 0 < z < wn+1, let

z =
∑n

i=1 ziw
i, where 0 ≤ zi < w, then the claim is equivalent to the algebraic fact that

sw

(
σn
w +

n∑
i=0

ziw
i
)

= sw

(
σn
w + 1 +

n∑
i=0

(w − 1− zi)wi
)
.

This proof is not, however, algebraic. The claim is established by showing a 1-to-1 cor-

respondence between the tree shapes with σn
w + z nodes and those with σn+1

w − z nodes.

Select a tree with σn
w + z nodes and visit each of its wn nodes at a distance of n from the

root. Each such node has w children; in total z are leaf nodes and w − z are λ. If a child

is λ, replace it with a new leaf; if it is a leaf, replace it with λ. The modified tree has

σn
w + wn+1 − z = σn+1

w − z nodes. Any subtrees balanced before the transformation are

balanced after and the transformation is clearly the sought-after 1-to-1 correspondence.

Some implications of the fact that the sequence generated by sw returns to unity and the

symmetry demonstrated by Theorem 2 are discussed in Section 6.

5 Exact Count Formula

An exact non-recurrence formula to evaluate sw(z) is developed below. Let n = Lw(z), where

z > 0 and Lw(z) = blogw(wz−z+1)c−1. Note, if σn
w ≤ z < σn+1

w then Lw(z) is the minimum

root-to-leaf path length in a balanced z-node tree. Represent z uniquely as

z = σn
w + z′, where z′ =

n∑
i=0

ziw
i and 0 ≤ zi < w.

So z′ = zn . . . z0 is the base w representation of z − σn
w. Theorem 3 proves that

sw(z) =

(
w

z0

) n∏
i=1

(
w

zi + 1

)mod(z′,wi)(
w

zi

)wi−mod(z′,wi)

, (3)

where mod(z′, wi) =
∑i−1

j=0 zjw
j.
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Theorem 3. Formula (3), where z > 0, n = Lw(z), z′ = z− σn
w, and zi = mod(bz′/wic, w),

properly evaluates sw(z).

Proof. This proof is by induction on n. For the base step let z = σ0
w + z0 = 1 + z0, where

0 ≤ z0 ≤ w, so sw(z) =
(
w
z0

)
by (2) which agrees with (3) for n = 0. Now assume the claim

is true for all z < σn+1
w for some n ≥ 0. Select any σn+1

w ≤ z < σn+2
w and let z′ = z− σn+1

w so

z′ =
∑n+1

i=0 ziw
i where 0 ≤ zi < w, then use (1) to expand sw(z).

sw(z) =

(
w

z0

)
sw

(
σn
w +

n∑
i=0

zi+1w
i + 1

)z0
× sw

(
σn
w +

n∑
i=0

zi+1w
i
)w−z0

(4)

Next, the sw terms on the right-hand side of the above are expanded then combined and

simplified. The first sw term might not straightforwardly satisfy the inductive assumption

since z1 + 1 = w is possible. However, expansion can easily be accomplished via Theorem 2

followed by use of the inductive assumption. Let z′′ =
∑n

i=0(w − 1− zi+1)w
i, then

sw

(
σn
w +

n∑
i=0

zi+1w
i + 1

)
= sw(σn

w + z′′) by Theorem 2

=

(
w

w − 1− z1

) n∏
i=1

(
w

w − zi+1

)mod(z′′,wi) n∏
i=1

(
w

w − 1− zi+1

)wi−mod(z′′,wi)

=

(
w

z1 + 1

) n∏
i=1

(
w

zi+1

)wi−mod(bz′/wc,wi)−1 n∏
i=1

(
w

zi+1 + 1

)mod(bz′/wc,wi)+1

(5)

The expansion of the second sw term of (4), using the inductive assumption is

sw

(
σn
w +

n∑
i=0

zi+1w
i
)

=

(
w

z1

) n∏
i=1

(
w

zi+1 + 1

)mod(bz′/wc,wi) n∏
i=1

(
w

zi+1

)wi−mod(bz′/wc,wi)

(6)

Now substitute (5) and (6) in (4) and simplify to show agreement with (3).

sw(z) =

(
w

z0

)[(
w

z1 + 1

) n∏
i=1

(
w

zi+1 + 1

)mod(bz′/wc,wi)+1 n∏
i=1

(
w

zi+1

)wi−mod(bz′/wc,wi)−1
]z0

×

[(
w

z1

) n∏
i=1

(
w

zi+1 + 1

)mod(bz′/wc,wi) n∏
i=1

(
w

zi+1

)wi−mod(bz′/wc,wi)
]w−z0

=

(
w

z0

) n+1∏
i=1

(
w

zi + 1

)mod(z′,wi)(
w

zi

)wi−mod(z′,wi)
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6 Discussion

Table 1 provides initial values of the sequences sw(z), where z = 1, 2, . . ., for some small w

and Figures 1–6 plot log(sw(z)); logarithms are used to enhance the observable detail. Each

graph has a repetitive, somewhat fractal-like appearance and it is straightforward to see why.

Consider the sequence sw(z), where z = σn+1
w , . . . , σn+2

w − 1, i.e., the sequence sw(σn+1
w + z′),

where z′ = 0, . . . , wn+2 − 1. So z′ can be written uniquely as
∑n+1

i=0 ziw
i, where 0 ≤ zi < w.

Now let h = h(z) = zn+1 and ` = `(z) = mod(z′, wn+1) and substitute in (3).

sw(z) =

(
w

z0

) n+1∏
i=1

(
w

zi + 1

)mod(z′,wi)(
w

zi

)wi−mod(z′,wi)

=

(
w

z0

) n∏
i=1

(
w

zi + 1

)mod(z′,wi)(
w

zi

)wi−mod(z′,wi)

×
(

w

h+ 1

)mod(z′,wn+1)(
w

h

)wn+1−mod(z′,wn+1)

= sw(σn
w + `)

(
w

h+ 1

)`(
w

h

)wn+1−`

=

(
w − h
h+ 1

)`(
w

h

)wn+1

sw(σn
w + `). (7)

This sequence can be divided into w sequences, each associated with a different h value.

Each short sequence has the form sw(σn+1
w +hwn+1+`), where 0 ≤ ` < wn+1−1; This can be

written as sw(z) = c`1c2sw(σn
w+`), where c1 and c2 are constants for a given h value according

to (7). Whether the shape of sw(σn
w + `) is stretched upwards for increasing values of `, just

magnified by c2, or stretched downwards depends on whether c1 is greater, equal to, or less

than 1, i.e., on whether w−1
2

is greater, equal to, or less than h. Each of the w pieces of this

graph segment is again, a recapitulation of w magnified and possibly stretched instances of

sw(σn−1
w + mod(`, wn−1)). Decomposition can be continued until the basic building blocks of

the graph are encountered: the sequence sw(σ0
w), . . . , sw(σ1

w − 1) =
(
w
0

)
, . . . ,

(
w

w−1

)
.

The graph of s2 in Figure 1 resembles the Blancmange and Togi curves. See [6] or [7] for

more information.

6



References

[1] R. Bayer amd E. M. McCreight, Organization and maintenance of large ordered indexes,

Acta Informatica, 1(3), pp. 173–189, 1972.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, & C. Stein: Introduction to Algorithms, 2nd

Edition, MIT Press and McGraw-Hill, 2001. See Chapter 13, Red-Black Trees.

[3] D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching, 2nd

Edition, Addison Wesely, 1998. See Section 6.2, Searching by comparison of keys.

[4] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, see Sequences A110316,

A131889, A131890, A131891, A131892, and A131893 at https://oeis.org, 2007.

[5] G. Adelson-Velskii and E. M. Landis, An algorithm for the organization of information,

Doklady Akademii Nauk SSSR, 146 pp. 263-266, 1962 (Russian). English translation by

Myron J. Ricci in Soviet Math. Doklady, 3, pp. 1259-1263, 1962.

[6] Weisstein, E. W. ”Blancmange Function.” From MathWorld–A Wolfram Web Resource

at http://mathworld.wolfram.com/BlancmangeFunction.html, 2019.

[7] Wikipedia the Free Encyclopedia, at https://en.wikipedia.org/wiki/Blancmange curve,

2019.

7



Table 1: Some values of sw(z) for small w and z.

s2(σ
0
2), . . . , s2(σ

4
2)

1, 2, 1, 4, 4, 4, 1, 8, 16, 32, 16, 32, 16, 8, 1, 16, 64, 256, 256, 1024, 1024, 1024, 256, 1024,

1024, 1024, 256, 256, 64, 16, 1

s2(σ
4
2), . . . , s2(σ

5
2)

1, 32, 256, 2048, 4096, 32768, 65536, 131072, 65536, 524288, 1048576, 2097152, 1048576,

2097152, 1048576, 524288, 65536, 524288, 1048576, 2097152, 1048576, 2097152, 1048576,

524288, 65536, 131072, 65536, 32768, 4096, 2048, 256, 32, 1

s3(σ
0
3), . . . , s3(σ

3
3)

1, 3, 3, 1, 9, 27, 27, 81, 81, 27, 27, 9, 1, 27, 243, 729, 561, 19683, 19683, 59049, 59049,

19683, 177147, 531441, 531441, 1594323, 1594323, 531441, 531441, 177147, 19683, 59049,

59049, 19683, 19683, 6561, 729, 243, 27, 1

s4(σ
0
4), . . . , s4(σ

2
4)

1, 4, 6, 4, 1, 16, 96, 256, 256, 1536, 3456, 3456, 1296, 3456, 3456, 1536, 256, 256, 96, 16, 1

s5(σ
0
5), . . . , s5(σ

2
5)

1, 5, 10, 10, 5, 1, 25, 250, 1250, 3125, 3125, 31250, 125000, 250000, 250000, 100000,

500000, 1000000, 1000000, 500000, 100000, 250000, 250000, 125000, 31250, 3125, 3125,

1250, 250, 25, 1

s6(σ
0
6), . . . , s6(σ

2
6)

1, 6, 15, 20, 15, 6, 1, 36, 540, 4320, 19440, 46656, 46656, 699840, 4374000, 14580000,

27337500, 27337500, 11390625, 91125000, 303750000, 540000000, 540000000, 288000000,

64000000, 288000000, 540000000, 540000000, 303750000, 91125000, 11390625, 27337500,

27337500, 14580000, 4374000, 699840, 46656, 46656, 19440, 4320, 540, 36, 1
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σ0
2 σ7

2

Figure 1: Initial graph of log(s2(z))

σ0
3 σ5

3

Figure 2: Initial graph of log(s3(z))

σ0
4 σ4

4

Figure 3: Initial graph of log(s4(z))

σ0
5 σ3

5

Figure 4: Initial graph of log(s5(z))

σ0
6 σ3

6

Figure 5: Initial graph of log(s6(z))

σ0
7 σ3

7

Figure 6: Initial graph of log(s7(z))
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